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1 Introduction

The AdS/CFT correspondence [1] is remarkable in so many ways. For example, there

is an underlying integrable structure that allows one to interpolate from weak to strong

coupling, and which enables many quantitave checks of the conjectured duality by explor-

ing both sides of the correspondence (see [2] and the references therein). An example is

provided by the “giant magnons” and the “dyonic giant magnons”, introduced by Hof-

man and Maldacena [3] and Dorey [4], respectively. They describe string configurations

on curved space-times of the form Rt × M, with M = F/G a symmetric space; for ex-

ample, Sn = SO(n + 1)/SO(n). Then, the classical motion of the string is described by
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a sigma model with target space M, and the Virasoro constraints, in a particular gauge,

lead to the Pohlmeyer reduction of that sigma model [5, 6]. In turn, this gives rise to an

associated integrable system that is a generalization of the sine-Gordon theory. These are

the symmetric space sine-Gordon theories (SSSG), and giant magnons can be mapped into

the soliton solutions to their equations-of-motion. Moreover, when the symmetric space is

of indefinite signature, like AdSn = SO(2, n − 1)/SO(1, n − 1), similar ideas can be used

to study also the motion of strings on curved spaces of the form M × S1, or even M. In

the context of the AdS/CFT correspondence, giant magnons have been extensively used

to study many aspects of superstrings in certain subspaces of AdS5 × S5 [3, 7, 8] and

AdS4 × CP 3 [9–11].

This work is a companion to [12], which provided a systematic study of the group

theoretical interpretation of the Pohlmeyer reduction and the associated SSSG theories for

symmetric spaces of definite, or indefinite, signature. The present work extends this to a

discussion and construction of a class of soliton solutions using the dressing transformation

method [13]. An important result that we establish is that the dressing method produces

both the giant magnon and its soliton avatar in the SSSG theory at the same time, without

the need to map one to other via the Pohlmeyer constraints. This is particularly useful

because, in general, it is not easy to perform the map.

For cases including Sn the giant magnon solutions produced by the dressing method

have been studied in [14] and they correspond to embeddings of the Hofman-Maldacena

giant magnon [3] associated to S2 ⊂ S5. One major shortcoming of the dressing method

is that, in the context of Sn = SO(n + 1)/SO(n), it does not produce the Dorey’s dyonic

giant magnon [4]. Nevertheless, this more general solution can be constructed by the

dressing procedure by using the alternative formulation of S3 as the symmetric space

SU(2)×SU(2)/SU(2), which is isomorphic to the Lie group SU(2). Embedding this solution

back in the original formulation in terms of the symmetric space Sn = SO(n + 1)/SO(n)

shows that the dyonic solution involves non-trivial geodesic motion in the space of collective

coordinates carried by the magnon/soliton. In this sense, the solutions have much in

common with the dyonic generalization of the monopole in four-dimensional gauge theories

coupled to an adjoint Higgs field (for example see [16].

Other examples that we consider in this work are the complex projective spaces CPn,

which are realized as the symmetric spaces SU(n + 1)/U(n). The case CP 3 is relevant to

the AdS/CFT correspondence involving a spacetime AdS4 × CP 3 [17]. The known giant

magnon solutions for this case [9–11, 18, 19] have all been obtained from the Hofman-

Maldacena solution and the dyonic generalization of Dorey via embeddings of S2 and S3

in CPn, respectively. Our results provide a class of new magnon/soliton solutions which

cannot be obtained from embeddings of those for Sn. In addition, we show that there should

exist an equivalent class of dyonic solutions in addition to the embeddings of Dorey’s dyon.

Finally, we consider the SU(n) principal chiral models, which can be formulated as

a symmetric space SU(n) × SU(n)/SU(n). For n > 2, these models admit several non-

equivalent Pohlmeyer reductions and, therefore, they give rise to different SSSG theories.

In this work we only consider the simplest cases, which correspond to the (parity invariant)

homogeneous sine-Gordon theories [20]. The solitons of these theories have been studied
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in [21] using a different formulation of the dressing transformation method based on rep-

resentations of affine Lie algebras. Our results provide new expressions for them involving

collective coordinates that clarify their composite nature in terms of basic SU(2) solitons.

More general reductions of the principal chiral models will be discussed elsewhere.

Notice that all the examples that we consider involve symmetric spaces of definite sig-

nature. In future work we will describe the generalization to symmetric spaces of indefinite

signature relevant to discussing AdSn, for example.

The plan of the paper is a follows. In section 2, we will formulate the sigma model

with target space a symmetric space F/G in terms of a constrained F -valued field without

introducing gauge fields. The relationship between this formulation and the approach

used in [12] is summarized in appendix A. Using that formulation, in section 3 we will

describe the Pohlmeyer reduction of the sigma model, and recover the formulation of the

SSSG equations as zero-curvature conditions on a left-right asymmetric coset of the form

G/H
(−)
L ×H(+)

R proposed in [12]. We will also address the possible Lagrangian formulations

of these equations and clarify their symmetries and conserved quantities, which play an

important rôle in the description of the soliton solutions. In section 4, we will review

the already known giant magnons in the context of Sn and CPn, and we will discuss the

relation between them and their relativistic SSSG solitonic avatars. In section 5, we will

use the dressing transformation method to construct magnons and solitons following the

approach of [22]. An important result of this section is that the dressing transformation is

compatible with the Pohlmeyer reduction, and that this method provides directly both the

magnon and its SSSG soliton without the need to map one into the other. In section 6, we

will apply the method to the SU(n) principal chiral model, and for n = 2 we will recover

Dorey’s dyonic giant magnon. In sections 7 and 8, we will apply the method to CPn

and Sn, respectively. In section 9, we discuss the possibility of finding solutions similar to

Dorey’s dyonic giant magnon by making the collective coordinates time dependent. Finally,

section 10 contains our conclusions, and there are four appendices.

2 Symmetric space sigma model

Our story begins with a sigma model in 1+1 dimensions whose target space is a symmetric

space, that is a quotient of two Lie groups F/G equipped with an involution σ− of F that

fixes G ⊂ F :

σ−(g) = g , ∀g ∈ G . (2.1)

Acting on f, the Lie algebra of F , the automorphism σ− gives rise to the canonical orthog-

onal decomposition

f = g ⊕ p , with [g, g] ⊂ g , [g, p] ⊂ p , [p, p] ⊂ g , (2.2)

where g and p are the +1 and −1 eigenspaces of σ−, respectively, and g is the Lie algebra

of G. Then, the sigma model with target space a symmetric space can be described as a

sigma model with a field f ∈ F where the G action f → fg−1, g ∈ G, is gauged. For

instance, this is the approach described in the prequel [12] (see also [23]). However, for
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present purposes, we find it more convenient to work directly in the coset F/G by defining

the F -valued field

F = σ−(f)f−1 (2.3)

and working directly with F instead of f , which we can think of as an F -valued field

subject to the constraint

σ−(F) = F−1 . (2.4)

In this formalism there is no need to introduce gauge fields and this simplification turns

out to be useful. Of course, our approach in terms of involutions can easily be translated

into the gauged sigma model language if need be (see appendix A).

We will also consider the principal chiral model which can either be considered as a

symmetric space G×G/G as above, with σ− being the involution that exchanges the two

G factors, or we can simply take the target space to be F = G itself, in which case the

involution σ− is not required. We will take the latter point of view in what follows.

The Lagrangian of the sigma model is simply

L = − 1

8κ
TrJµJ µ , (2.5)

where

Jµ = ∂µFF−1 . (2.6)

Note that F → σ−(F) = F−1 is a symmetry of the action and equations-of-motion and

therefore it is consistent to impose it by hand on the field F from the start and, as mentioned

above, in this formalism there are no gauge fields. The equations-of-motion for the group

field are

∂µJ µ = 0 . (2.7)

In other words, Jµ provides the conserved currents corresponding to the global FL × FR
symmetry of the sigma model with target space F (the principal chiral model) under which

F → UFV for any U, V ∈ F . The left and right currents are

J L
µ = ∂µFF−1 = Jµ and J R

µ = F−1∂µF = F−1JµF , (2.8)

and we can define the corresponding conserved charges

QL =

∫ ∞

−∞
dx ∂0FF−1 and QR =

∫ ∞

−∞
dxF−1∂0F . (2.9)

In the principal chiral model these charges are independent. However, in the F/G models

the FL × FR symmetry is reduced by the constraint (2.4) so that they are invariant only

under F → σ−(U)FU−1 with U ∈ F . Taking (A.4) into account, these transformations

correspond to f → Uf , which specifies the global symmetries of the symmetric space

sigma model in the gauged sigma model language. Consequently, in the F/G models the

two charges are related by σ−(QL) = −QR.

Since J± = ∂±FF−1, these currents trivially satisfy the Cartan-Maurer conditions1

∂+J− − ∂−J+ − [J+,J−] = 0 . (2.10)

1 In out notation x+ = t + x and x− = t − x

– 4 –



J
H
E
P
0
4
(
2
0
0
9
)
0
6
0

Then, the equations-of-motion (2.7), along with the identity (2.10), can be written in the

form of a zero curvature condition:
[

∂+ − J+

1 + λ
, ∂− − J−

1 − λ

]

= 0 , (2.11)

where λ is a spectral parameter. The residues at λ = ±1 then give the two equations

∓ ∂±J∓ +
1

2
[J+,J−] = 0 , (2.12)

respectively, which are equivalent to (2.7) and (2.10).

3 The Pohlmeyer reduction

The Pohlmeyer reduction, at an algebraic level, involves imposing the conditions (see ap-

pendix A and [12])2

∂±FF−1 = f±Λ±f
−1
± , (3.1)

where Λ± are constant elements in a maximal abelian subspace a of p in (2.2) and f± ∈ F .

The natural degree-of-freedom left after the reduction is γ = f−1
− f+ which is valued in

G ⊂ F . In order to see this, we act on (3.1) with σ−. The left-hand sides become

σ−
(

∂±FF−1
)

= ∂±F−1F = −F−1∂±F (3.2)

while the right-hand sides transform into

σ−
(

f±Λ±f
−1
±
)

= −σ−(f±)Λ±σ−(f−1
± ) . (3.3)

The two can be made consistent by requiring

σ−(f±) = F−1f± , (3.4)

and so

σ−(γ) = f−1
− FF−1f+ = γ , (3.5)

which shows that γ ∈ G. Actually, it is clear that f± are ambiguous since we could always

right-multiply by the group of elements that commute with Λ±, respectively. We shall soon

see that this freedom leads to a gauge symmetry in the reduced model. Notice that once

the reduction has been imposed the “left” F charges can be written

QL =

∫ ∞

−∞
dx
(

f+Λ+f
−1
+ + f−Λ−f

−1
−
)

. (3.6)

Using (2.12) with J± = f±Λ±f
−1
± , we have

[

f−1
+ ∂−f+ − 1

2
γ−1Λ−γ,Λ+

]

= 0 . (3.7)

2In [12] the right-hand side had scales multipliers µ±. In the present work, we will not indicate these

factors. We can either re-introduce them by scaling x±, or one can think of them as having been absorbed

into Λ± (see appendix A).
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This implies that

f−1
+ ∂−f+ − 1

2
γ−1Λ−γ = A

(R)
− (3.8)

where A
(R)
− is an unknown element that satisfies [A

(R)
− ,Λ+] = 0 and, using (3.4), σ−(A

(R)
− ) =

A
(R)
− . Therefore, A

(R)
− takes values in h+, which is the Lie algebra of the subgroupH(+) ⊂ G

of elements that commute with Λ+. Similarly, we have

[

−f−1
+ ∂+f+ + γ−1∂+γ +

1

2
Λ+, γ

−1Λ−γ

]

= 0 , (3.9)

which implies that

f−1
+ ∂+f+ − γ−1∂+γ − 1

2
Λ+ = γ−1A

(L)
+ γ . (3.10)

Here, [A
(L)
+ ,Λ−] = 0 and, using (3.4) once more, σ−

(

A
(L)
+

)

= A
(L)
+ . This shows that

A
(L)
+ ∈ h−, which is the Lie algebra of the subgroup H(−) ⊂ G of elements that commute

with Λ−.

On the other hand, the integrability condition for (3.1) implies

[

∂+ − f+Λ+f
−1
+ , ∂− − f−Λ−f

−1
−
]

= 0 , (3.11)

from which we deduce

[

∂+ + f−1
+ ∂+f+ − Λ+, ∂− + f−1

+ ∂−f+ − γ−1Λ−γ
]

= 0 . (3.12)

Using (3.8) and (3.10), it gives

[

∂+ + γ−1∂+γ + γ−1A
(L)
+ γ − 1

2
Λ+, ∂− +A

(R)
− − 1

2
γ−1Λ−γ

]

= 0 , (3.13)

which are the zero-curvature form of the Symmetric Space sine-Gordon (SSSG) equations-

of-motion. Notice that, as a consequence of (3.1), this set of equations has a natural

H
(−)
L ×H

(+)
R gauge symmetry under which

f± −→ f±h
−1
± , (3.14)

where h± are local group elements in the subgroups H(±) ⊂ G. Under this symmetry

γ −→ h−γh
−1
+ (3.15)

and

A
(R)
− −→ h+

(

A
(R)
− + ∂−

)

h−1
+ , A

(L)
+ −→ h−

(

A
(L)
+ + ∂+

)

h−1
− . (3.16)

This is exactly the result of [12].

The SSSG equations (3.13) are integrable and lead to an infinite set of conserved

quantities which, as discussed in appendix B, include charges corresponding to the global

part of the gauge group, and the energy and momentum. Since the conserved charges
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play an important rôle, we will describe their construction in some detail. First of all, by

projecting (3.13) onto h+ and γ · · · γ−1 onto h− yields the zero curvature conditions

[∂+ +A
(R/L)
+ , ∂− +A

(R/L)
− ] = 0 , (3.17)

where we have defined the “missing” components of the gauge connections,

A
(R)
+ =Ph+

(

γ−1∂+γ + γ−1A
(L)
+ γ

)

,

A
(L)
− =Ph−

(

− ∂−γγ
−1 + γA

(R)
− γ−1

)

.
(3.18)

Eq. (3.17) gives rise to the conserved quantities associated to the global version of the

H
(−)
L ×H

(+)
R gauge transformations. Moreover, it enables the gauge fixing conditions that

relate the SSSG equations to the non-abelian affine Toda equations (A
(R/L)
± = A

(R/L)
∓ = 0),

and the gauge fixing conditions required for their Lagrangian formulation (see (3.34)).

Then, it is important to notice that (3.17) holds provided that Λ± give rise to the orthogonal

decompositions

f = Ker
(

AdΛ±

)

⊕ Im
(

AdΛ±

)

(3.19)

and, consequently, that
[

Ker
(

AdΛ±

)

,Ker
(

AdΛ±

)]

⊂ Ker
(

AdΛ±

)

,

[

Ker
(

AdΛ±

)

, Im
(

AdΛ±

)]

⊂ Im
(

AdΛ±

)

.
(3.20)

This is always true if the symmetric space F/G is of definite signature (G compact), which

is the only case considered in this work. An example were the decomposition (3.19) is

not satisfied is provided by the “ lightlike ” Pohlmeyer reduction of the sigma model with

target space AdSn discussed in [12].

Under the gauge transformations (3.15)–(3.16),

A
(R)
± −→ h+

(

A
(R)
± + ∂±

)

h−1
+ , A

(L)
± −→ h−

(

A
(L)
± + ∂±

)

h−1
− . (3.21)

Then, in order to construct gauge invariant conserved quantities, we will transform (3.17)

into gauge invariant equations. First of all, we choose a gauge slice γ0 such that any field

γ can be written as

γ = φLγ0φ
−1
R , (3.22)

with φL ∈ H(−) and φR ∈ H(+). Under gauge transformations, γ0 remains invariant while

φL → h−φL and φR → h+φR. Then, it can be easily checked that

Ã
(R)
± = φ−1

R

(

A
(R)
± + ∂±

)

φR and Ã
(L)
± = φ−1

L

(

A
(L)
± + ∂±

)

φL (3.23)

are gauge invariant and, moreover, that

[∂+ + Ã
(R/L)
+ , ∂− + Ã

(R/L)
− ] = 0. (3.24)

In general, H(±) will be of the form U(1)p± ×H(±)
ss , where p± are positive integers and

H
(±)
ss are semi-simple factors. This allows one to write

φR/L = eαR/LϕR/L , (3.25)

– 7 –
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where eαR/L ∈ U(1)p± and ϕR/L ∈ H
(±)
ss . Then, the projection of (3.24) on the Lie algebras

of H
(±)
ss and U(1)p± provide two different types of gauge invariant conserved quantities.

Namely, the projection of (3.24) on the Lie algebra of U(1)p± shows that the currents

JµR/L = ǫµνPu(1)p±

(

Ã(R/L)
ν

)

= ǫµν
(

Pu(1)p±

(

A(R/L)
ν

)

+ ∂ναR/L

)

(3.26)

are conserved. They lead to the “local” gauge invariant conserved quantities

QR/L =

∫ +∞

−∞
dx J0

R/L = αR/L(+∞) − αR/L(−∞) +

∫ +∞

−∞
dxPu(1)p±

(

A
(R/L)
1

)

(3.27)

which take values in the (abelian) Lie algebra of U(1)p± . On the other hand, the projection

of (3.24) on the Lie algebra of H
(±)
ss provide the “non-local” conserved quantities given by

the path ordered exponentials

ΩR/L = P exp

(

−
∫ ∞

−∞
dxP

h
(±)
ss

(

Ã
(R/L)
1

)

)

= ϕ−1
R/L(+∞) P exp

(

−
∫ ∞

−∞
dxP

h
(±)
ss

(

A
(R/L)
1

)

)

ϕR/L(−∞) ,

(3.28)

which take values in H
(±)
ss . Notice that the conserved charges (3.27) and (3.28) are not

the same as the conserved charges of the original sigma model QR and QL. In particular,

the former are Lorentz invariant (see appendix B) while the latter are not. In certain

circumstances, and in particular for the soliton solutions, it can transpire that for particular

configurations P
h
(±)
ss

(

A
(R/L)
±

)

take values in an abelian subalgebra of h
(±)
ss , and ϕR/L in the

corresponding abelian subgroup of H
(±)
ss (for all x). In this case, the path ordering in (3.28)

is unnecessary and we can write ΩR/L = expQ
(ss)
R/L for abelian charges Q

(ss)
R/L taking values

in the relevant abelian subalgebras of h
(±)
ss .

It is worth remarking that φL and φR are subject to an ambiguity whenever a particular

field configuration is invariant under a certain subgroup of H
(−)
L ×H

(+)
R . As an example,

consider the vacuum configuration itself, γ = 1 with A
(R/L)
± = 0. It is invariant under

the global vector subgroup of H
(−)
L × H

(+)
R , which means that φL and φR are uniquely

defined only modulo φL → φLU and φR → φRU , with U ∈ H
(−)
L ∩ H(+)

R . Consequently,

the local charges carried by the vacuum solution are unambiguously defined only up to

QL ∼ QL + ρ and QR ∼ QR + ρ, for ρ ∈ u(1)p− ∩ u(1)p+ . So, in a sense, only the

combination QL − QR is an unambiguously well-defined charge. The significance of this

and its relation to spontaneous symmetry breaking will become clearer when we discuss

the Lagrangian formulation of the SSSG equations later in this section.

The energy-momentum tensor is constructed in appendix (B), and leads to the follow-

ing expression for the energy of a configuration

E =
1

2

∫

dxTr
[

−
(

∂+γγ
−1 +A

(L)
+

)2
+A

(R)
+

2

−
(

γ−1∂−γ −A
(R)
−
)2

+A
(L)
−

2
+ Λ+γ

−1Λ−γ − Λ+Λ−
]

,

(3.29)
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relative to E = 0 for γ = 1. We will find that the dressing procedure always produces

soliton solutions of (3.13) which have vanishing gauge fields A
(R)
− = A

(L)
+ = 0 and which

satisfy the conditions

Ph+

(

γ−1∂+γ
)

= 0 , Ph−

(

∂−γγ
−1
)

= 0 , (3.30)

and hence A
(R)
µ = A

(L)
µ = 0. Then, the conserved charges only get contributions from the

boundary terms φR/L(±∞) and, within the examples discussed in the following sections,

these turn out to be non-trivial only in the principal chiral models (see section 6). As a

consequence only the principal chiral model solitons are charged under the SSSG H
(−)
L ×

H
(+)
R symmetry. In contrast, the solitons do always carry sigma model charge QL,R. In

section 9, we will see how to produce solitons in the reduced symmetric space sigma models

which carry non-trivial H
(−)
L ×H(+)

R charges; however, one needs to go beyond the dressing

transformation to produce them.

Lagrangian formulations. It is only natural to search for a relativistically invariant

Lagrangian formulation of the SSSG equations (3.13). However, as we shall see and as

has been pointed out elsewhere [12, 24, 25] there are problems that arise in pursuing this

idea, and it may be that the SSSG equations themselves should be used as a basis for a

canonical quantization without recourse to a Lagrangian.

Lagrangian formulations are only known when H(−) and H(+) are isomorphic and of

the form [12, 24]

H
(+)
R = ǫR(H) , H

(−)
L = ǫL(H) , (3.31)

where H is a Lie group and ǫL,R : H → G are two “anomaly-free” group homomorphisms

that descend to embeddings of the corresponding Lie algebras h and g.3 Then, each non-

equivalent choice of ǫL and ǫR gives rise to a different Lagrangian formulation. This is

obtained by writing

A
(L)
+ = ǫL(A+) , A

(R)
− = ǫR(A−) , (3.32)

where A± take values in h, and imposing the constraints

Ph+

(

γ−1∂+γ + γ−1ǫL(A+)γ
)

= ǫR(A+) ,

Ph−

(

− ∂−γγ
−1 + γǫR(A−)γ−1

)

= ǫL(A−) ,

(3.33)

which can be viewed as a set of partial gauge fixing conditions [12, 25].4 They can be

written as

A
(L)
− = ǫL(A−) , A

(R)
+ = ǫR(A+) , (3.34)

where A
(L)
− and A

(R)
+ are the “missing” components defined in (3.18). These conditions

reduce the H
(−)
L ×H

(+)
R gauge symmetry (3.15) to

γ −→ ǫL(h)γǫR(h−1) , h ∈ H , (3.35)

3Here, anomaly free simply means that Tr
`

ǫL(a)ǫL(b)
´

= Tr
`

ǫR(a)ǫR(b)
´

for all a, b ∈ h.
4In [12], it was shown that this interpretation is consistent provided that the orthogonal decomposi-

tions (3.19) hold, which is always true if the symmetric space is of definite signature.
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under which Aµ transforms as a gauge connection:

Aµ −→ h
(

Aµ + ∂µ
)

h−1 . (3.36)

In addition, the gauge conditions (3.33) leave a residual symmetry under the global (abel-

ian) transformations

γ −→ eǫL(ρ)γe+ǫR(ρ) , Aµ −→ Aµ , (3.37)

where eρ is in the centre of H.

The gauge-fixed equations-of-motion are then

[

∂+ + γ−1∂+γ + γ−1ǫL(A+)γ, ∂− + ǫR(A−)
]

=
1

4
[Λ+, γ

−1Λ−γ] (3.38)

and these follow as the equations-of-motion of the Lagrangian density

L = LWZW (γ) +
1

2π
Tr
(

− ǫL(A+)∂−γγ
−1 + ǫR(A−)γ−1∂+γ (3.39)

+ γ−1ǫL(A+)γǫR(A−) − ǫL(A+)ǫL(A−) − 1

4
Λ+γ

−1Λ−γ
)

,

where LWZW (γ) is the usual WZW Lagrangian density for γ. In fact this theory is the

asymmetrically gauged WZW model for G/H specified by ǫR/L with a potential. Notice

that the partial gauge-fixing constraints (3.33) now appear as the equations-of-motion of

the gauge connection. If we take the Lagrangian (3.40) as the basis for a QFT then many

questions arise. For instance are the resulting QFTs independent of the choice of the form

of the gauge group; i.e., independent of ǫL and ǫR? In many cases, it can be shown that

different theories are actually related by a target space T-duality symmetry [26], hinting

that they are equivalent at the quantum level.

Now we turn to the symmetries of the Lagrangian theory and the relation with the

conserved charges QL and QR of the SSSG equations. Since our primary interest is in

the soliton solutions, it is a fact that the transformations φR/L that bring γ to the gauge

slice (3.22) lie in an abelian subgroup of H
(−)
L and H

(+)
R . As a consequence there are

associated local conserved currents and charges.5 Then, for our purposes, it will be enough

to restrict the following discussion to the case of abelian H. Then, the Lagrangian (3.40)

is symmetric under the (abelian) global transformations

γ −→ eǫL(u)γe−ǫR(v) , Aµ −→ Aµ , (3.40)

where u, v take values in h. For u = v this is just a global gauge transformation of the

form (3.35) while for u = −v it is a global symmetry transformation of the form (3.37).

Following standard means, we can derive the corresponding Noether currents as follows (for

instance, see [27]). Consider the variation of the Lagrangian action S =
∫

d2xL under an

infinitesimal transformation of the form

γ−1δγ = γ−1ǫL(u)γ − ǫR(v) , δAµ = 0 , (3.41)

5For a more general configuration, we would have to separate out the abelian factors in H = U(1)p×Hss

in an obvious way, as we did in the last section, and describe the semi-simple part in terms of non-local

conserved charges. However, for the soliton solutions this technology is unnecessary.
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with u = u(t, x) and v = v(t, x). It reads

δS =

∫

d2x Tr

([

∂+ + γ−1∂+γ + γ−1ǫL(A+)γ − 1

2
Λ+, ∂− + ǫR(A−) − 1

2
γ−1Λ−γ

]

γ−1δγ

)

=

∫

d2x Tr

(

(

∂+A− − ∂−A+

)

(u− v)+

+ ∂−
(

Ph+

(

γ−1∂+γ + γ−1ǫL(A+)γ
)

− ǫR(A+)
)

ǫR(v)+

+ ∂+

(

Ph−

(

−∂−γγ−1 + γǫR(A−)γ−1
)

− ǫL(A−)
)

ǫL(u)

)

(3.42)

Then, the condition that δS vanishes for any u, v provides the conservation equations we

are looking for. Using the constraints (3.33), they read

∂+A− − ∂−A+ = 0 , (3.43)

which are the conservation equations of the current

Jµ = ǫµνAµ . (3.44)

Notice that, since δS = 0 for u = v, Jµ is the Noether current associated to the abelian

global transformations (3.37), and there is no conserved current associated to global gauge

transformations.

Jµ is clearly not invariant under the gauge transformations (3.35)–(3.36), which in this

(abelian) case are of the form

γ −→ eǫL(u)γe−ǫR(u) , Aµ −→ Aµ − ∂µu . (3.45)

In order to construct gauge invariant conserved quantities, we write the SSSG gauge

slice (3.22) as

γ = φLγ0φ
−1
R = eǫL(α+β)γ0e

−ǫR(α−β) (3.46)

such that, under (3.45), α→ α+u while β and γ0 remain fixed. Then, the gauge invariant

Noether current associated to the abelian global transformations (3.37) is

J̃µ = ǫµν
(

Aν + ∂να
)

, (3.47)

which provides the Noether charge

QN = α(+∞) − α(−∞) +

∫ +∞

−∞
dxA1 . (3.48)

Similarly to the case of QR/L discussed in the previous section, the definition of QN is

subject to an ambiguity whose form can be found by looking at the vacuum configuration

γvac = 1. Namely, since it is invariant under γ → eργe−ρ, the field α in (3.46) is only
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defined up to α → α + η for any field η ∈ h such that ǫL(η) = ǫR(η). Consequently, the

Noether charge is defined only modulo

QN −→ QN + q for each q ∈ h such that (ǫL − ǫR)(q) = 0. (3.49)

In the Lagrangian formulation, this ambiguity has a physical interpretation. Notice that

each constant ρ ∈ h such that (ǫL − ǫR)(ρ) = 0 generates a symmetry transformation of

the form (3.37) that changes γvac = 1; namely, 1 → e2ǫL(ρ). Then, the ambiguity reflects

the impossibility of defining a Noether charge for global symmetry transformations that

do not leave the vacuum configuration invariant.

The relationship between the SSSG conserved quantities QR/L (or Q
(ss)
R/L) and QN can

be easily derived by taking into account (3.27), (3.28), (3.32) and, according to (3.46),

αR/L = ǫR/L(α∓ β). It reads

QL = ǫL
(

QN +QT
)

, QR = ǫR
(

QN −QT
)

, (3.50)

where

QT = β(+∞) − β(−∞) (3.51)

is a kind of (gauge invariant) topological, or kink, charge. The definition of QT only makes

sense if the global symmetry (3.37), which corresponds to β → β+ ρ in (3.46), changes the

vacuum configuration and gives rise to non-trivial boundary conditions for γ. Consequently,

the definition of QT is also subject to an ambiguity whose form can be found by looking

again at γvac = 1. Since it is invariant under γ → eργe−ρ, the field β in (3.46) is defined

only up to β → β + η for any η ∈ h such that ǫL(η) = −ǫR(η), which means that the

topological charge is defined modulo

QT −→ QT + q for each q ∈ h such that (ǫL + ǫR)(q) = 0 . (3.52)

To summarize, in the Lagrangian formulation the soliton configurations are expected

to carry both Noether QN and topological QT charges. It is worth noticing that the

combination of the SSSG charges that is free of ambiguities reads

QL −QR =
(

ǫL − ǫR
)

(QN ) +
(

ǫL + ǫR
)

(QT ) (3.53)

which, not surprisingly, is also free of the ambiguities (3.49) and (3.52). Looking at this

equation, it is worthwhile to recall that the different Lagrangian formulations of a set of

SSSG equations are related by H
(−)
L × H

(+)
R gauge transformations, and that QL − QR

is gauge invariant and, hence, independent of the choice of ǫR/L. Moreover, since T-

duality transformations interchange Noether and topological charges, (3.53) is consistent

with the expectation that the different Lagrangian theories are indeed related by T-duality

symmetries.

The physical meaning of the charges and their ambiguities becomes clearer once we

consider examples of particular gaugings. The most obvious kind of gauging that can

always be chosen is

ǫL(α) = ǫR(α) = α , (3.54)
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which corresponds to gauging the vector subgroup of H
(−)
L ×H

(+)
R . Then, the value of QN

is meaningless, and the solitons are kinks characterized by the topological charge QT . In

this case, the Noether current corresponds to the axial transformations γ → eργeρ, which

do not leave the vacuum invariant. This means that at the classical level the symmetry is

spontaneously broken. Of course at the quantum level this would have to be re-evaluated.

Since we are assuming that H is abelian, one can also gauge the axial vector subgroup

by taking

ǫL(α) = −ǫR(α) = α , (3.55)

In this case, QN is free of ambiguities. It is the Noether charge corresponding to vector

transformations γ → eβγe−β that leave the vacuum invariant and, therefore, do not break

the symmetry. In contrast, since the vacuum configuration is unique up to (axial) gauge

transformations, the topological charge QT is arbitrary. Therefore, solitons are similar to

Q-balls. Other choices of ǫR/L give rise to different interpretations of solitons as some sort

of dyons that carry both Noether and topological charge.

As we have mentioned, the dressing procedure always produces soliton solutions

of (3.13) which have vanishing gauge fields A
(R)
− = A

(L)
+ = 0. This means that the soliton

solutions are valid solutions of the gauged WZW model (3.38) and (3.33) for any choice of

gauging with Aµ = 0. Consequently, as is clear from (3.48) and (3.51), the charges can be

calculated in terms of boundary values of α and β or, equivalently, αR/L. The mass of the

solitons can be calculated from the energy-momentum tensor of the gauged WZW theory

which leads (up to an overall factor) to (3.29) with the identifications (3.32). Notice that,

as a consequence of the anomaly free condition, Tr
(

A
(R/L)
±

2)
= Tr

(

A
(L/R)
±

2)
= Tr

(

A2
±
)

.

3.1 CP 2 example

In order to have an explicit example of the SSSG equations and their Lagrangian formu-

lation consider M = CP 2. Since the symmetric space CP 2 = SU(3)/U(2) has rank one,

there is a unique Pohlmeyer reduction for which we can take (up to conjugation)

Λ+ = Λ− ≡ Λ =







0 −1 0

1 0 0

0 0 0






. (3.56)

In this case H(±) = U(1) and we can use both vector or axial gauging to achieve a

Lagrangian formulation. We can parameterize the group element and gauge field as

(see (3.22))

γ = eaLh







1 0 0

0 cos θeiϕ sin θ

0 − sin θ cos θe−iϕ






e−aRh , (3.57)

where h = idiag(1, 1,−2) is the generator of h, and αR/L = aR/Lh.

If we choose vector gauging, then solving the conditions (3.33) for Aµ and writing αL+

αR = 2α like in (3.46), yields the gauge invariant Noether current for axial transformations:

J̃ (V )µ = ǫµν
(

Aν + ∂να
)

=
1

3

((

1

2
+ 2 cot2 θ

)

∂µ(aL − aR) + cot2 θ∂µϕ

)

h . (3.58)
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The two remaining equations, also depend only on αL − αR, as one expects since the

combination αL+αR has been gauged away, and so it is convenient to define aL−aR = ψ/2

(ψh corresponds to 4β in (3.46)):

∂µ∂µψ = −4 cos θ sinϕ ,

∂µ∂µθ +
cos θ

sin3 θ
∂µ(ϕ+ ψ)∂µ(ϕ+ ψ) = − sin θ cosϕ .

(3.59)

These equations along with the continuity of the Noether current follow from the La-

grangian

L = ∂µθ∂
µθ +

1

4
∂µψ∂

µψ + cot2 θ∂µ(ψ + ϕ)∂µ(ψ + ϕ) + 2 cos θ cosϕ . (3.60)

The Lagrangian manifests the axial symmetry ψ → ψ + a. In this case, the vacuum

configuration is degenerate, γvac = ehψ/2, i.e. θ = ϕ = 0 with 0 ≤ ψ < 4π, and the

definition of the Noether charge does not make sense. Then, the solitons are characterized

by the charge QT , which is simply the kink charge

QT =
1

4

[

ψ(∞) − ψ(−∞)
]

h . (3.61)

Classically the axial symmetry would be spontaneously broken. In the quantum theory,

this would have to re-evaluated since the theory is defined in 1 + 1-dimensional spacetime,

Goldstone’s Theorem does not apply and the would-be Goldstone modes should be strongly

coupled giving rise to a mass gap. A related issue is the fact that the Lagrangian does not

have a good expansion in terms of fields around their vacuum values due to the cot2 θ term

in the Lagrangian.

On the other hand, if we choose axial gauging, then αL − αR = 2α, and the gauge

invariant conserved Noether current for vector transformations is

J̃ (A)µ = ǫµν
(

Aν + ∂να
)

=
1

1 + 4 cot2 θ

(

3

2
∂µ
(

aL + aR
)

− cot2 θǫµν∂νϕ

)

h . (3.62)

Then, we can define aL+aR = ψ̃/2 (ψ̃h = 4β in (3.46)) and the corresponding Lagrangian is

L =∂µθ∂
µθ +

1

1 + 4 cot2 θ

(

9

4
∂µψ̃∂

µψ̃ + cot2 θ∂µϕ∂
µϕ− 6 cot2 θǫµν∂µψ̃∂νϕ

)

+ 2cos θ cosϕ ,

(3.63)

which manifests the vector symmetry ψ̃ → ψ̃+a. In this case the vacuum is non-degenerate,

γvac = 1, because ψ̃ is not a good coordinate around θ = ϕ = 0,6 and the vacuum is

invariant under the (vector) symmetry. Consequently, the definition of QT does not make

sense. In contrast,

QN =

∫ +∞

−∞
dx J̃

(A)
0 (3.64)

is unambiguously defined. Moreover, in this case the Lagrangian does have a good field

expansion around the vacuum.

6In the same way that the polar angle it not a good coordinate around r = 0.
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4 Giant magnons and their solitonic avatars

“Giant magnon” is the name given to a soliton of the reduced F/G model in the context

of string theory. In particular, the examples of S5 and CP 3 are directly relevant to the

AdS/CFT correspondence for AdS5 × S5 [1] and AdS4 × CP 3 [17], respectively. In this

section, we review the known giant magnons in the context of Sn and CPn and use them

to illustrate some of the more important ideas discussed in the previous section in a more

concrete way. In particular, we will discuss the relation between the giant magnons and

their relativistic solitonic avatars in the associated SSSG equations.

The sphere Sn corresponds to the symmetric space SO(n + 1)/SO(n) while the com-

plex symmetric space CPn corresponds to SU(n + 1)/U(n). In both cases the associated

involution is

σ−(F) = θFθ−1 , (4.1)

where

θ = diag
(

− 1, 1, . . . , 1
)

. (4.2)

In appendix C we explain how to map the spaces Sn and CPn, expressed in terms of

their usual coordinates, into the group field F . For the spheres, parameterized by a real

unit n+ 1-vector X with components Xa, |X | = 1, we have

F = θ
(

1 − 2XXT
)

, (4.3)

while for the complex projective spaces CPn we have the complex n + 1 vector Z whose

components are the complex projective coordinates Za, a = 1, . . . , n + 1, so that CPn is

identified by modding out by complex re-scalings Za ∼ λZa, λ ∈ C. In this case

F = θ

(

1 − 2
ZZ†

|Z|2
)

. (4.4)

The giant magnons can be though of as excitations around a “vacuum” which is the

simplest solution to the equations-of-motion and Pohlmeyer constraints, (2.7) and (3.1).

The vacuum solution has f± = 1 and

F0 = exp
[

x+Λ+ + x−Λ−
]

, (4.5)

where, up to overall conjugation and generalizing (3.56),

Λ+ = Λ− ≡ Λ =







0 −1 0

1 0 0

0 0 0






. (4.6)

This solution corresponds to the following solution for the sphere and projective coordi-

nates,

X0 = Z0 = e1 cos t− e2 sin t . (4.7)

Here, e1, . . . ,en+1 are a set of orthonormal vectors in R
n+1. The physical interpretation is

clear: the string is collapsed to a point which traverses a great circle on Sn defined by the
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plane spanned by e1 and e2 at the speed of light.7 The vacuum solution actually carries

infinite sigma model charge and so the physically meaningful charge is actually the charge

relative to the vacuum,

∆QL =

∫ ∞

−∞
dx
(

∂0FF−1 − ∂0F0F−1
0

)

. (4.8)

In particular, the component of this charge along the Lie algebra element Λ, up to scaling,

is identified with ∆− J , the difference between the scaling dimension and R charge of the

associated operator in the boundary CFT:

∆ − J =

√
λ

8π
Tr
(

Λ∆QL

)

, (4.9)

where λ is the ’t Hooft coupling.

For the sphere case, we can express the conserved charge (4.8) directly in terms of X:

QL,ab =

∫ ∞

−∞
dx
(

∂0XaXb −Xa∂0Xb

)

. (4.10)

In particular, ∆− J =
√
λ

2π ∆QL,12. There is an analogous equation for the complex projec-

tive spaces in terms of the projective coordinates.

Sn giant magnons. The original giant magnon was described by Hofman and Malda-

cena [3]. It is a solution which takes values in the subspace S2 ⊂ Sn picked out by 3

mutually orthonormal vectors {e1,e2,Ω}. The vectors e1 and e2 are already fixed by the

choice of vacuum solution, however the direction of Ω, which describes an Sn−2 ⊂ Sn, plays

the rôle of an internal collective coordinate of the magnon. If (θ, φ) are polar coordinates

on S2, then the solution written down by Hofman and Maldacena is

cos θ =
sin p

2

cosh x′
,

tan(φ− t) = tan
p

2
tanhx′ .

(4.11)

Here, and in the following, we define the Lorentz boosted coordinates t′ and x′:

x′ = x coshϑ− t sinhϑ , t′ = t coshϑ− x sinhϑ , (4.12)

where ϑ is the rapidity (v = tanhϑ). For the Hofman-Maldacena magnon,

tanhϑ = cos
p

2
. (4.13)

Notice that the magnon is not relativistic in the sense that the moving solution is not the

Lorentz boost of the stationary solution. The reason is that the Pohlmeyer constraints (3.1)

are not Lorentz covariant (this is discussed in more detail in appendix B). In terms of the

unit vector X , we can write this solution as

X =
[

sin t sin
p

2
tanhx′ − cos t cos

p

2

]

e1

+
[

cos t sin
p

2
tanhx′ + sin t cos

p

2

]

e2 + sin
p

2
sechx′Ω .

(4.14)

7Notice that the plane is determined by the choice of representative Λ.
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It has sigma model charge

∆QL = −4
∣

∣

∣
sin

p

2

∣

∣

∣
Λ , (4.15)

relative to the vacuum.

The solitonic avatar of the Hofman-Maldacena giant magnon in the reduced SSSG

model has vanishing gauge fields A
(L)
+ = A

(R)
− = 0, while the non-vanishing elements of γ

are

γ =







−1 0 0T

0 − cos θ(x) sin θ(x)ΩT

0 sin θ(x)Ω 1 + (cos θ(x) − 1)ΩΩT






, (4.16)

where we have highlighted the 2 × 2 subspace associated to e1 and e2. In the above, θ(x)

(not to be confused with the polar angle above or the rapidity) is the soliton solution to

the sine-Gordon equation

∂µ∂
µθ = − sin θ , (4.17)

which can be written

θ = 4 tan−1(ex) . (4.18)

Since the sine-Gordon equation is relativistic, in the sense that the moving solution is the

Lorentz boost of the static solution, it is sufficient to write the solution above in the soliton

rest frame. This soliton has vanishing charges QL = QR = 0. 8

The second kind of solution is Dorey’s dyonic giant magnon [4]. The relation of Dorey’s

magnon to the Hofman-Maldacena magnon is analogous to the relation between the dyon

and monopole solutions in gauge theories in 3 + 1 dimensions. In the latter case, the dyon

is obtained by allowing the charge angle, a collective coordinate talking values in S1, to

move around the circle with constant velocity. The non-trivial aspect of this is that the

angular motion has a back-reaction on the original monopole. One way to think of what is

happening is in terms of Manton’s picture of geodesic motion [28]. The charge angle is an

internal collective coordinate of the monopole and the idea is that one can make a time-

dependent solution by allowing the internal collective coordinates to be time dependent.

For low velocities the motion is simply geodesic motion on the moduli space defined by

a metric which is constructed from the inner-product of the zero modes associated to

the collective coordinates. In the present setting, it is not clear whether Manton’s analysis

applies directly because the Hofman-Maldacena giant magnon is a time-dependent solution

rather than a time-independent one like the monopole. We have seen that the Hofman-

Maldacena giant magnon has an internal collective coordinate Ω which parameterizes an

Sn−2. Dorey’s solution corresponds to allowing Ω to move around a great circle (the

geodesic) in Sn−2. We can describe this motion by picking out two orthonormal vectors

Ω(i), orthogonal to e1 and e2, and then take (in the magnon’s rest frame)

Ω(t) = cos(t sinα)Ω(1) + sin(t sinα)Ω(2) . (4.19)

8Since H = SO(n−1) is semi-simple for n ≥ 4, these charges provide examples of the conserved quantities

Q
(ss)

R/L
defined in the paragraph after (3.28).
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The parameter α sets the angular velocity. This motion has a back-reaction on the original

solution and we can write the complete moving solution as

X =
(

t cos
p

2
+ sin t sin

p

2
tanh(x′ cosα)

)

e1

+
(

sin t cos
p

2
+ cos t sin

p

2
tanh(x′ cosα)

)

e2 + sin
p

2
sech(x′ cosα)Ω(t′) ,

(4.20)

The parameter α and the rapidity ϑ are determined by two parameters p and r via

cotα =
2r

1 − r2
sin

p

2
, tanhϑ =

2r

1 + r2
cos

p

2
. (4.21)

The Hofman-Maldacena magnon corresponds to the limit r → 1 (or α→ 0).

Notice that the back-reaction of the angular motion is simply taken care of by the

replacement x′ → x′ cosα. The dyonic giant magnon carries charge

QL = −2(1 + r2)

r

∣

∣

∣
sin

p

2

∣

∣

∣
Λ − 2(1 − r2)

r

∣

∣

∣
sin

p

2

∣

∣

∣
h , (4.22)

relative to the vacuum, where h is the generator of SO(n + 1) corresponding to rotations

in the plane picked out by Ω(i):

h = Ω(1)Ω(2)T − Ω(2)Ω(1)T . (4.23)

In the reduced SSSG model, the dyonic magnon gives a soliton for which the gauge

fields do not vanish:

A
(L)
+ = −A(R)

− =
cos2 α sinα

cos(2α) − cosh(2x cosα)
h . (4.24)

In addition, the “missing” components defined in (3.18) are

A
(R)
+ = −A(R)

− , A
(L)
− = −A(L)

+ . (4.25)

which means that only the temporal components of the currents JµR/L are non-vanishing.

In addition, we have A
(L)
µ = −A(R)

µ which, in the case when H is abelian, corresponds to

the condition for axial gauging (3.32) in the Lagrangian formulation. The group field (in

the rest frame) generalizes (4.16) in an obvious way:

γ =







−1 0 0T

0 − cos θ(x) sin θ(x)Ω(t)T

0 sin θ(x)Ω(t) 1 + (cos θ(x) − 1)Ω(t)Ω(t)T






. (4.26)

where

cos θ(x) = 1 − 2 cos2 α sech2(x cosα) , (4.27)

which includes the effects of the back reaction of the geodesic motion. The solution carries

charges (3.27)

QL = −QR =

∫ ∞

−∞
dx

cos2 α sinα

cos(2α) − cosh(x cosα)
h =

(

α− π

2

)

h . (4.28)
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In particular, notice that the non-vanishing combination QL − QR is the unambiguously

defined charge according to the discussion in section 3. Notice that for these solutions

there is no contribution from the boundary terms in (3.27). In addition, when M = Sn,

n > 3, the subgroup H = SO(n − 1) is non-abelian. However, we can still define local

conserved currents and associated charges because φR/L and gauge fields A
(R/L)
µ lie in an

abelian subgroup SO(2) ⊂ H. The dyonic soliton has a mass

M = 4cosα . (4.29)

The Lagrangian interpretation of these dyons depends of the choice of ǫR/L, which fixes

the form of the group of gauge transformations. In the gauged WZW Lagrangian for-

mulation with vector gauging, which can be achieved for any n, these dyons would carry

non-vanishing topological charge QT . However, for the particular case of M = S3, when

H = SO(2) is abelian, it is also possible to define an axially gauged WZW theory, in which

case the dyons carry non-vanishing Noether charge QN corresponding to vector SO(2)

transformations. In both cases, QT and QN are related to QR/L by means of (3.53).

CP n giant magnons. Motivated by its application to the investigation of the AdS/CFT

correspondence for AdS4 × CP 3 [17], the CP 3 case has been discussed in some detail in

the literature [9–11, 18, 19]. The giant magnon solutions described so far are all obtained

by embeddings of the Hofman-Maldacena giant magnon and Dorey’s dyonic magnon. The

Hofman-Maldacena giant magnon can be embedded in CPn in two distinct ways. Firstly,

by taking S2 ≃ CP 1 ⊂ CPn [9]. If θ(x, t) and φ(x, t) is the solution in terms of polar

coordinates in (4.11), then the projective coordinates are

Z = eiφ(2x,2t)/2 sin
(

θ(2x, 2t)/2
)

e1 + e−iφ(2x,2t)/2 cos
(

θ(2x, 2t)/2
)

e2 . (4.30)

The scaling of the spacetime coordinates here is necessary in order to be consistent with

the scaling of the Pohlmeyer constraints in (3.1). In addition, in order that the solution is

oriented with respect to the choice of vacuum in (4.5), we have to rotate it with an element

of SU(2) ⊂ SU(n), Z → UZ,

U =
1√
2







eπi/4 eiπ/4 0

e3iπ/4 e−iπ/4 0

0 0 1






. (4.31)

Notice that this solution has no internal collective coordinates. The charge carried by the

magnon is

∆QL = −2
∣

∣

∣sin
p

2

∣

∣

∣ Λ , (4.32)

relative to the vacuum.

This magnon corresponds to a soliton solution of the SSSG equations of the form

γ =







eiψ 0 0

0 e−iψ 0

0 0 1






, (4.33)
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with A
(L)
+ = A

(R)
− = 0. The field ψ then satisfies the sine-Gordon equation

∂µ∂µψ = 2 sin(2ψ) . (4.34)

The giant magnon solution (4.30) corresponds to the sine-Gordon kink

ψ = 2 tan−1(e2x) +
π

2
. (4.35)

The solution carries H
(−)
L ×H

(+)
R charge

QL = −QR =
1

2

(

ψ(∞) − ψ(−∞)
)

=
π

2
. (4.36)

The inequivalent embedding of the Hoffman-Maldacena giant magnon is via the sub-

space RP 2 ⊂ CPn [10]. The solution for Z is exactly equal to X in (4.14), however the

vector Ω can now be taken to be a complex vector with |Ω| = 1.9 Consequently the soliton

has internal collective coordinates associated to an S2n−3. The fact that the solution is

valued in RP 2 is because the solution (4.14) is itself valued in S2 and this fixes the complex

scaling freedom, Z → λZ, up to the discrete element Z → −Z and a further quotient by

this gives RP 2. The dyonic magnon can be embedded in an analogous way when n ≥ 3

via the subspace RP 3 ⊂ CPn [11].

5 Magnons and solitons by dressing the vacuum

One way to construct the magnon/soliton solutions is to use an approach known as the

dressing transformation [13] which is closely related to the Bäcklund transformation. For

magnons in string theory this approach has been described in detail in [14, 15]. For the

SSSG theories, and in particular their gauged WZW formulations, such an approach was

described in [24, 29]. Schematically the transformation takes a known solution — for

example a trivial kind of solution that we call the “vacuum” — and adds in a soliton.10

It is an important fact that the dressing transformation is consistent with the Pohlmeyer

reduction in the sense that if the original solution satisfies the constraint (3.1) then so will

the dressed solution. In fact we shall see that the dressing transformation constructs both

the magnon and its SSSG soliton avatar at the same time without the need to map one

into the other.

The dressing procedure has been described for general symmetric space sigma mod-

els in [22] and we shall draw heavily on results derived there. The procedure begins by

identifying a “vacuum” solution. In the present context, our vacuum solution will be the

simplest solution that satisfies the Pohlmeyer constraint (3.1). This identifies it as (4.5)

which naturally satisfies the Pohlmeyer constraints (3.1) with f± = 1. In appendix D, we

show that the dressing dressing transformation directly produces a soliton of the SSSG

equations (3.13) with vanishing A
(L)
+ = A

(R)
− = 0:

∂−
(

γ−1∂+γ
)

=
1

4
[Λ+, γ

−1Λ−γ] . (5.1)

9In addition, we should replace Ω
T by Ω

† in (4.16).
10In section 6, we will show that in the principal chiral model cases multiple soliton solutions are sometimes

produced where the solitons are all mutually at rest.
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In addition, we find that the conditions

γ−1∂+γ
∣

∣

∣

h+

= ∂−γγ
−1
∣

∣

∣

h−
= 0 (5.2)

are satisfied.11 Notice that this means that the solitons automatically satisfy the equations

of the gauged WZW model (3.40) for any choice of gauging.

The strategy of [22] begins by defining the symmetric space sigma model F/G in

terms of initially the subgroup F ⊂ SL(n,C) via one, or possibly more, involutions that

we denote collectively as σ+. In order to pick out the coset F/G ⊂ F , the second part

of the construction involves the extra involution σ− whose explicit form for Sn and CPn

have been given in (4.1). The dressing transformation is then constructed in SL(n,C) and

the involutions give constraints that ensure that the transformation is restricted to the

quotient F/G. In this work, we shall focus on three examples in order to be concrete:

(i) F/G = SU(n)×SU(n)/SU(n). These are the principal chiral models and in this case

it is more convenient to formulate the sigma model directly in terms of an SU(n)-

valued field F(x). In this case, there is only a single involution

σ+(F) = F†−1
(5.3)

required, and the involution σ− is absent.

(ii) The complex projective spaces CPn = SU(n + 1)/U(n). In this case, there are two

involutions σ+(F) = F†−1
and σ−(F) = θFθ, the latter defined in (4.1).

(iii) Sn = SO(n + 1)/SO(n). In this case, there are three involutions σ
(1)
+ (F) = F†−1

,

σ
(2)
+ (F) = F∗ and σ−(F) = θFθ, the latter defined in (4.1).

Starting in SL(n,C), the equations-of-motion for the sigma model have the zero cur-

vature form (2.11) which are the integrability conditions for the associated linear system

∂+Ψ(x;λ) =
∂+FF−1

1 + λ
Ψ(x;λ) ,

∂−Ψ(x;λ) =
∂−FF−1

1 − λ
Ψ(x;λ) .

(5.4)

Notice that the group field is simply

F(x) = Ψ(x; 0) . (5.5)

The dressing transformation involves constructing a new solution Ψ of the linear system

of the form

Ψ(x;λ) = χ(x;λ)Ψ0(x;λ) (5.6)

in terms of an old one Ψ0, which in our case corresponds to the vacuum solution in (4.5):

Ψ0(x;λ) = exp
[ x+

1 + λ
Λ+ +

x−
1 − λ

Λ−
]

, (5.7)

11This latter result makes use of the orthogonal decompositions (3.19), which hold in general for symmetric

spaces of definite signature.

– 21 –



J
H
E
P
0
4
(
2
0
0
9
)
0
6
0

By picking out the residues of ∂±Ψ(λ)Ψ(λ)−1 at λ = ∓1 (which come entirely from the

terms where the derivatives hit Ψ0(x;λ)) it follows that

∂±FF−1 = χ(∓1)Λ±χ(∓1)−1 . (5.8)

This is a key result because it means that the dressing transformation preserves the

Pohlmeyer reduction and, in addition, we have

f± = χ(∓1)Φ , (5.9)

where Φ is a, as yet, unknown element that commutes with Λ±:

[Λ±,Φ] = 0 , (5.10)

which will be chosen so that

γ = f−1
− f+ = Φ−1χ(+1)−1χ(−1)Φ (5.11)

is valued in G ⊂ F . This will then guarantee that the dressing transformation will give a

soliton solution in the associated SSSG model. In addition, we will see that f± satisfy (3.4).

We will find below that

Φ = F1/2
0 = exp

[x+Λ+

2
+
x−Λ−

2

]

. (5.12)

We now briefly review the construction of the dressing factor χ(λ) following [22]. The

general form is

χ(λ) = 1 +
∑

i

Qi
λ− λi

, χ(λ)−1 = 1 +
∑

i

Ri
λ− µi

(5.13)

where the residues Qi and Ri are matrices of the form

Qi = XiF
†
i , Ri = H iK

†
i , (5.14)

for vectors X i, F i, H i and Ki.
12

Taking the residues of χ(λ)χ(λ)−1 = 1 at λ = λi and µi, gives, respectively,

Qi +
QiRj
λi − µj

= 0 , Ri +
QjRi
µi − λj

= 0 , (5.15)

which can be used to solve for Xi and Ki:

XiΓij = Hj , Ki(Γ
†)ij = −F j , (5.16)

where the matrix

Γij =
F

†
iHj

λi − µj
. (5.17)

12Notice that i is not the vector index but rather labels a set of vectors associated to the poles of χ±1(λ).
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It follows from the linear system (5.4) that

∂±FF−1 = (1 ± λ)∂±χχ
−1 + χΛ±χ

−1 . (5.18)

Since the left-hand side is independent of λ, the residues of the right-hand side at λ = λi
and µi must vanish,13 giving

(1 ± λi)(∂±Qi)
(

1 +
Rj

λi − µj

)

+QiΛ±
(

1 +
Rj

λi − µj

)

= 0 ,

−(1 ± µi)
(

1 +
Qj

µi − λj

)

∂±Ri +
(

1 +
Qj

µi − λj

)

Λ±Ri = 0 ,

(5.19)

which are solved by

(1 ± λi)∂±F
†
i = −F

†
iΛ± , (1 ± µi)∂±H i = Λ±H i . (5.20)

The solutions of these equations are

F i =
(

Ψ0(λi)
†)−1

̟i , H i = Ψ0(µi)πi , (5.21)

for constant complex n-vectors ̟i and πi.

It can then be shown by tedious computation (re-produced in appendix D) that the

generic solution that arises from the dressing procedure gives γ, as in (5.11) with Φ as

in (5.12), i.e.

γ = F−1/2
0 χ(+1)−1χ(−1)F1/2

0 (5.22)

satisfies the equation-of-motion (5.1). Using the explicit formulae for χ(λ) and its inverse,

we find that the G-valued field of the reduction is

γ = 1 − 2

(1 − µi)(1 + λj)
F−1/2

0 Hi

(

Γ−1
)

ij
F

†
jF

1/2
0 . (5.23)

So we see that the data of the dressing transformation constructs both the sigma model

magnon and the soliton in the SSSG. There are simple formulae for the charges QL,R of

the dressed solution defined in (2.9), and for QL the formula follows directly from (5.18):

since the right-hand side is independent of λ we can evaluate it at λ = ∞, which gives

∂±FF−1 = ±∂±
∑

i

Qi + Λ± . (5.24)

The final term here is precisely ∂±F0F−1
0 and so the meaningful quantity to calculate is

the charge of the dressed solution relative to the vacuum solution, and it follows directly

that

∆QL =
∑

i

Qi

∣

∣

∣

x=∞
−
∑

i

Qi

∣

∣

∣

x=−∞
. (5.25)

In order to calculate the charge QR, we use the fact that

F−1 = F
∣

∣

∣

λi→λ−1
i ,µi→µ−1

i ,Λ±→−Λ±

, (5.26)

13In the following we will assume that λi 6= µj for any pair i, j. If the contrary is true then additional

conditions must be imposed as we shall see later with an example.
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which can be proved directly. Hence, it follows that the charge relative to the vacuum

solution is

∆QR = −∆QL

∣

∣

∣

λi→λ−1
i ,µi→µ−1

i ,Λ±→−Λ±

. (5.27)

Up till now we have described the Bäcklund transformation for SL(n,C). However, as

mentioned above we have to impose involution conditions in order to describe a particular

symmetric space. As described in [22] for each choice of symmetric space there are a set

of involutions that must be imposed. First of all, there is an involution (or possibly more

than one) σ+ that picks out F ⊂ SL(n,C):

F =
{

F ∈ SL(n,C)
∣

∣ σ+(F) = F
}

. (5.28)

Then there is a further involution σ−, that is detailed above for the explicit examples we

have in mind, that picks out F/G parameterized by F (as explained in appendix C):

F/G ≃
{

F ∈ F
∣

∣σ−(F) = F−1
}

. (5.29)

Notice also that the quotient group is identified as

G =
{

γ ∈ F
∣

∣ σ−(γ) = γ
}

. (5.30)

This allows us to prove that (5.22) is, as claimed, valued in G ⊂ F . Using σ−(F±1/2
0 ) =

F∓1/2
0 and σ−(χ(±1)) = F−1χ(±1)F0 gives

σ−(γ) = F1/2
0 · F−1

0 χ(+1)−1 · F−1χ(−1)F0 · F−1/2
0 = γ . (5.31)

The involutions are each of of the following four types:

σ1(F) = θFθ−1 , σ2(F) = θF∗θ−1 ,

σ3(F) = θ(FT )−1θ−1 , σ4(F) = θF†−1
θ−1 ,

(5.32)

where θ is either a symmetric, antisymmetric, hermitian or anti-hermitian matrix. The

involutions (σ1, σ3) are holomorphic while (σ2, σ4) are anti-holomorphic.

The correct way to impose these conditions on Ψ(x;λ) are

Ψ(λ) = σ+

(

Ψ(λ̃)
)

,

Ψ(1/λ) = Fσ−
(

Ψ(λ̃)
)

,
(5.33)

where λ̃ = λ, λ∗, if σ± is holomorphic or anti-holomorphic, respectively. Notice that if we

take λ = 0 and use F = Ψ(0) and Ψ(∞) = 1, yields the correct conditions

σ+(F) = F , σ−(F) = F−1 . (5.34)

Furthermore it is easy to see that the vacuum solution (5.7) satisfies these conditions since

Λ± ∈ a ⊂ p.

Written in terms in terms of χ(λ) the conditions (5.33) become

χ(λ) = σ+

(

χ(λ̃)
)

,

χ(1/λ) = Fσ−
(

χ(λ̃)
)

F−1
0 ,

(5.35)
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which means that the two sets of poles {λi} and {µi} must be separately invariant under

λ → λ̃ (for σ+), or λ → 1/λ̃ (for σ−), for σ1 and σ2, and mapping into each other for σ3

and σ4.

Rather than describe all the different cases, we specialize in this work to the three

examples (i)-(iii). Notice that in all our examples the group F is compact and the elements

Λ†
± = −Λ±. Since we are principally interested in the application to string theory, there are

some additional conditions on Λ±. The vacuum solution F0 should be a t-dependent, but

x-independent, solution. This immediately requires that Λ+ = Λ−. Notice that in cases (ii)

and (iii), the symmetric space has rank 1 and so either Λ+ = Λ− ≡ Λ or Λ+ = −Λ− ≡ Λ,

for a fixed element Λ (up to conjugation). For case (i), the principal chiral model, there

are more general models with Λ+ 6= Λ− that will be discussed elsewhere.

The issue of relativistic invariance is quite subtle. With the choice Λ+ = Λ−, the

vacuum solution is t-dependent. Clearly, if we boost this solution then it will no longer

satisfy the Pohlmeyer constraints (3.1). This fact is then inherited by the dressed solution.

As we shall argue, although the solution is localized in the sense, for example, that the

density of its charges J L
0 and J R

0 , relative to the vacuum, is localized at a certain position

in space moving with a certain velocity, the solutions with different velocities are not related

by boosts. On the contrary, the solution in the reduced SSSG theory does respect Lorentz

transformations in the sense that the solutions with different velocities are related by boosts

(see appendix B).

Let us identify the velocity of the dressed solution. The dependence on x is via Ψ0(ξ),

where ξ is one of the λi or µi. The localized nature of the soliton arises because when

ξ has a imaginary part, Ψ0(ξ) has an exponential dependence on x. Assuming that Λ is

anti-hermitian, the relevant dependence is

exp

[

i Im
( x+

1 + ξ
+

x−
1 − ξ

)

Λ

]

= exp

[

2i Im
( t− ξx

1 − ξ2

)

Λ

]

(5.36)

and this leads to exponential fall-off of the energy/charge density away from the centre

which is located at the solution of

Im
( t− ξx

1 − ξ2

)

= 0 . (5.37)

The velocity of the soliton is therefore

v =
Im (1 − ξ2)−1

Im ξ(1 − ξ2)−1
=

2r

1 + r2
cos

p

2
, (5.38)

where ξ = reip/2. Roughly speaking, the dressed solution describes N solitons (for i, j =

1, . . . , N) and λi is a parameter that determines the velocity of the ith soliton via (5.38)

with ξ = λi. However, for the cases Sn and CPn, the additional constraints mean that the

solution actually represents less than N independent solitons.

On the other hand, in the reduced SSSG model, the complete dependence on t and x

is through the combination

F−1/2
0 Ψ0(ξ) = exp

[

((1 + ξ2)t

1 − ξ2
− 2ξx

1 − ξ2

)

Λ

]

. (5.39)
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In this case, the model does have relativistic invariance and the expression above can be

written

exp
[(

− t′ sinα− ix′ cosα
)

Λ
]

, (5.40)

where (t′, x′) are the boosted coordinates defined in (4.12) and the parameter α and the

rapidity ϑ are determined by r and p as in (4.21). The angle α sets both the size and

the internal angular velocity of the soliton. In the rest frame of the soliton, p = π or,

equivalently, ξ = ri.

6 The principal chiral models

As described in section 2, we can either think of these theories as symmetric space sigma

models on M = G×G/G (so as a theory on G×G with an involution σ− that exchanges the

two G factors) or more directly as a sigma model defined on the Lie group G (and thus not

needing a σ− involution). We shall follow the second option and, hence, we formulate the

theory in terms of a G-valued field F defined as a subgroup of SL(n,C) by the involution(s)

σ+, and in this approach there is no involution σ−.

In this work we will only consider the choice G = SU(n), where there is a single

involution

σ+(F) = F†−1
(6.1)

that, in the classification of [22], is of type σ4 with θ = I. Invariance under σ+ requires

Ψ(λ) = Ψ(λ∗)†
−1
, (6.2)

which is satisfied by imposing µi = λ∗i that in turn implies that

H i = F i , Ki = Xi (6.3)

in (5.14). This means that πi = ̟i for each i and, moreover, that

Xi = Ki = F j

(

Γ−1
)

ji
, Γij =

F
†
iF j

λi − λ∗j
, (6.4)

and

χ(λ) = 1 +
F i

(

Γ−1
)

ij
F

†
j

λ− λj
, χ(λ)−1 = 1 −

F i

(

Γ−1
)

ij
F

†
j

λ− λ∗i
. (6.5)

Then, using (5.5) and (5.6), the SU(n) principal chiral model magnon is

F = χ(0)F0 = F0 −
F i

(

Γ−1
)

ij
F

†
jF0

λj
, (6.6)

while, according to (5.23), its solitonic avatar in the associated SSSG theory reads

γ = 1 − 2

(1 − λ∗i )(1 + λj)
F−1/2

0 F i

(

Γ−1
)

ij
F

†
jF

1/2
0 , (6.7)
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where

F i = Ψ0(λ
∗
i )̟i . (6.8)

In general, we will have to multiply (6.6) and (6.7) by constant phase factors in order to

enforce detF = 1 and det γ = 1, respectively.

The rank of the symmetric space M = G × G/G coincides with the rank of the Lie

group G. Therefore, unless G = SU(2), it gives rise to different Pohlmeyer reductions whose

interpretation in the context of string theory is still to be understood. They are specified

by two elements Λ± of the Cartan subalgebra of g which, in the defining representation,

are anti-hermitian diagonal matrices. In this work we will only consider the reductions

corresponding to

Λ+ = Λ− = idiag
(

ζa
)

= Λ (6.9)

so that F0 only depends on t. Then, the vacuum solution of the associated linear system

is

Ψ0(λ) = diag
(

eΘa(λ)
)

, (6.10)

where

Θa(λ) =
iζax+

1 + λ
+
iζax−
1 − λ

= iζa

( 2t

1 − λ2
− 2λx

1 − λ2

)

. (6.11)

Furthermore, we will restrict ourselves to the cases with ζa 6= ζb for a 6= b so that H(+) =

H(−) = U(1)n−1, which correspond to the so-called (parity symmetric) homogeneous sine-

Gordon models [20]. Then, without loss of generality, we can order the ζa according to 14

ζ1 > ζ2 > · · · ζn . (6.12)

More general reductions with Λ+ 6= Λ− will be discussed elsewhere.

One-soliton solutions are obtained by considering a single pole in χ(λ), and so

χ(λ) = 1 +
ξ − ξ∗

λ− ξ

FF †

F †F
, (6.13)

where

F = Ψ0(ξ
∗)̟ (6.14)

for a complex n-vector ̟. In terms of components

Fa = eΘa(ξ∗)̟a . (6.15)

The complex n-vector ̟ represents a set of collective coordinates for the solitons. Since

χ(λ) and, hence, the soliton solutions are explicitly invariant under complex re-scalings

̟ → λ̟, with λ ∈ C, these collective coordinates span a CPn−1. Notice that constant

shifts of the solitons in space and time act on the collective coordinates via

̟ −→ exp
[ δx+

1 + ξ∗
Λ +

δx−
1 − ξ∗

Λ
]

̟ . (6.16)

14For those who are familiar with the HSG theories, this is equivalent to taking Λ+ = Λ− inside the

principal Weyl chamber with respect to the standard choice of the basis of simple roots.
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So some of the collective coordinates fix the position of the soliton in space and determine

the temporal origin. The interpretation of the remaining “internal” collective coordinates

will emerge when we analyze the solutions in more detail.

First of all, we think of the SU(n) principal chiral model magnons. Using (6.6), the

group-valued field F is given by

Fab = eip/n
(

δabe
Θa(0) − ξ − ξ∗

ξ

eΘa(ξ∗)̟a̟
∗
be

−Θb(ξ)+Θb(0)

∑

c |̟c|2eΘc(ξ∗)−Θc(ξ)

)

, (6.17)

where we have multiplied F by the phase eip/n in order to enforce detF = 1. This magnon

carries SU(n)L×SU(n)R charges QR/L whose value relative to the vacuum solution can be

calculated using (5.25) and (5.27). The result is ∆QR/L = diag
(

∆Qa
R/L

)

with

∆Qa
L = −2i

∣

∣r sin
p

2

∣

∣

(

δa,min − δa,max

)

∆Qa
R = −2i

∣

∣r−1 sin
p

2

∣

∣

(

δa,min − δa,max

)

,

(6.18)

where ξ = reip/2. Next, we look at the solitonic avatar of the magnon (6.17) in the SSSG

model which is provided by (6.7). It reads

γab = eiC
(

δab −
2(ξ − ξ∗)

(1 − ξ∗)(1 + ξ)
· e

Θa(ξ∗)−Θa(0)/2̟a̟
∗
be

−Θb(ξ)+Θb(0)/2

∑

c |̟c|2eΘc(ξ∗)−Θc(ξ)

)

, (6.19)

where we have multiplied γ by the constant phase

eiC =
(1 − r2 + 2ri sin p

2

1 − r2 − 2ri sin p
2

)1/n
(6.20)

to enforce det γ = 1. This field configuration satisfies the equations-of-motion (3.13) with

A
(L)
− = A

(R)
+ = 0. Then, the value of the unambiguously well-defined Lorentz invariant

SSSG charge QL −QR carried by this soliton is provided by

γ(+∞)γ−1(−∞) = eQL−QR , (6.21)

which follows from (3.22), (3.27), and γvac
0 = 1. The result is QL −QR = diag

(

QaL −QaR
)

with

QaL −QaR = 2i arctan
( 2|r|
r2 − 1

)

(

δa,min − δa,max

)

. (6.22)

Finally, the mass of this SSSG soliton can be calculated using (3.29), which leads to

M =
4|r|

(r2 + 1)

(

ζmin − ζmax

)

. (6.23)

Eqs. (6.22) and (6.23) show that all the non-trivial SSSG solutions are obtained with

r > 0, and that charge conjugation corresponds to r → 1/r. Moreover, eqs. (6.18), (6.22),

and (6.23) unravel the rôle of the collective coordinates ̟. This solution is actually a

superposition of “max”–“min” basic solitons, all mutually at rest, which exhibits that,
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with the special choice Λ+ = Λ−, there are no forces between them. The basic solitons

are associated to the pairs (a, a+ 1), with only ̟a and ̟a+1 non-vanishing. Those with a

knowledge of root systems will appreciate that these basic solitons are naturally associated

to the simple roots of SU(n) and a particular SU(2) ⊂ SU(n).15 Then, the rôle of the

collective coordinates ̟a is to fix the relative space-time positions of the basic solitons.

Let us analyze the SU(2) case in more detail, since SU(2) ≃ S3 and, in any case, this

describes the basic solitons of the SU(n) theory. We take

ζ1 = −ζ2 =
1

2
⇒ Λ =

i

2
diag

(

1,−1
)

. (6.24)

Shifting x± as in (6.16), and using the overall scaling symmetry, allows us to fix without-

loss-of-generality ̟ = (1, 1). As with more general solutions, ξ = reip/2 determines the

velocity of the soliton as well as the angular velocity of the internal motion, the former as

in (5.38). The solution has the explicit form

F =

(

eit
(

cos p2 + i sin p
2 tanh(x′ cosα)

)

−i sin p
2e

−it′ sinα sech(x′ cosα)

−i sin p
2e

+it′ sinα sech(x′ cosα) e−it
(

cos p2 − i sin p
2 tanh(x′ cosα)

)

)

, (6.25)

where x′ = x cosh ϑ− t sinhϑ and t′ = t coshϑ− x sinhϑ are the boosted coordinates. The

parameter α and the rapidity ϑ are determined by the two parameters p and r via (4.21).

Notice, that the moving solution is not the boost of the solution at rest because of the e±it

factors. Using (6.18), the SU(2)L × SU(2)R charges relative to the vacuum carried by this

magnon can be written as

∆QL = −4|r sinσ|Λ , ∆QR = −4|r−1 sinσ|Λ . (6.26)

It is not difficult to check that (6.25) corresponds to Dorey’s dyonic magnon (4.20).16

Next we turn to the soliton avatar of (6.25). In the rest frame (ξ = ri, or p = π), it is

γ =
1

r2 + 1

(

r2 − 1 − 2ri tanh(x cosα) ire−2it sinαsech(x cosα)

2ire+it sinαsech(x cosα) r2 − 1 + 2ri tanh(x cosα)

)

, (6.28)

along with A
(L)
+ = A

(R)
− = 0. Using (4.21) with p = π, in this equation

cosα =
2r

1 + r2
, sinα =

1 − r2

1 + r2
. (6.29)

Then, the charge and mass carried by this SSSG soliton can be written as

QL −QR = 4arctan

(

2|r|
r2 − 1

)

Λ , M =
8|r|

(r2 + 1)
= 4

∣

∣

∣

∣

sin

(

1

2
Tr[Λ(QL −QR)]

)∣

∣

∣

∣

.

(6.30)

15The composite nature of these solutions was already noticed in [21] in the context of the homogeneous

sine-Gordon theories.
16The explicit relationship reads

X = −Re(F11)e1 + Im(F11)e2 − Im(F12)Ω
(1)

− Re(F12)Ω
(2)

. (6.27)
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Eq. (6.28) provides the well known one soliton solutions of the complex sine-Gordon equa-

tion [30]. Notice that the r = 1 soliton is static. It is the embedding of the usual sine-

Gordon soliton in the reduced SU(2) principal chiral model. For this configuration, the

charge QL −QR is uniquely defined only modulo 4πΛ, a feature that played an important

rôle in the construction of the CSG scattering matrix proposed in [31].

In [26], it was shown that this SSSG soliton saturates a Bogomol’nyi-type bound,

which explains the explicit relationship between mass and charge shown in (6.30). If we

choose axial gauging, then QL − QR corresponds to a U(1) Noether charge and these

solutions provide two-dimensional examples of Q-balls, which has been recently exploited

to investigate some aspects of the dynamics of that type of extended solutions in quantum

field theories [32].

7 Complex projective space

In this case the target space of the sigma model is the symmetric space SU(n + 1)/U(n).

As we have described in section 5, this is picked out from the universal construction in

SL(n,C) by two involutions; σ+(F) = F†−1
, along with σ− in (4.1). Notice that σ− is of

type σ1 in the list (5.32) and is consequently holomorphic. The vacuum solution is defined

in (4.5).

Turning to the dressing transformation, invariance under σ− requires that

Ψ(1/λ) = FθΨ(λ)θ−1 (7.1)

and this means that the poles {λi} must come in pairs (λi, λi+1 = 1/λi) and we can think

of a single soliton as being a pair of the basic solitons of the SU(n) principal chiral model.

In addition, the fact that the poles come in pairs, requires associated conditions for each

pair i = 1, 3, . . .:

̟i+1 = θ̟i , (7.2)

which in turn means that

F i+1 = Ψ0(1/λ
∗
i )θ̟i = F0θΨ0(λ

∗
i )̟i = F0θF i . (7.3)

Let us consider in more detail the one soliton solution obtained from a single pair of

poles {ξ, 1/ξ}. The dressing factor is

χ(λ) = 1 +
Q1

λ− ξ
+

Q2

λ− 1/ξ
, (7.4)

and the matrix Γij has components

Γ11 =
β

ξ − ξ∗
, Γ12 =

ξ∗γ

|ξ|2 − 1
,

Γ21 = − ξγ

|ξ|2 − 1
, Γ22 = − |ξ|2β

ξ − ξ∗
,

(7.5)

where we have defined the two real numbers

β = F †F , γ = F †F0θF , (7.6)
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where F ≡ F 1. Therefore

Q1 =
1

∆

[

− |ξ2|β
ξ − ξ∗

FF † +
ξγ

|ξ|2 − 1
F0θFF †

]

,

Q2 =
1

∆

[ β

ξ − ξ∗
F0θFF †θF†

0 − ξ∗γ

|ξ|2 − 1
FF †θF†

0

]

.

(7.7)

In the above, we have defined

∆ = det Γ =
|ξ|2γ2

(|ξ|2 − 1)2
− |ξ|2β2

(ξ − ξ∗)2
. (7.8)

The solution depends on the complex vector ̟ ≡ ̟1 and the complex number ξ. In

addition,

χ(λ)−1 = 1 +
R1

λ− ξ∗
+

R2

λ− 1/ξ∗
, (7.9)

where

R1 =
1

∆

[ |ξ2|β
ξ − ξ∗

FF † +
ξ∗γ

|ξ|2 − 1
FF †θF0

]

,

R2 =
1

∆

[

− β

ξ − ξ∗
F0θFF

†θF†
0 − ξγ

|ξ|2 − 1
F0θFF

†
]

.

(7.10)

The magnon solution is obtained from F = χ(0)F0. It corresponds to the projective

coordinates17

Z =
(

α̃+ θFF †θ
)

Z0 , (7.11)

where

α̃ = − ξβ

ξ − ξ∗
− γ

|ξ|2 − 1
. (7.12)

The complex n+ 1-vector ̟ represents a set of collective coordinates for the magnon.

In fact, it is easy to see that only this vector up to complex re-scalings ̟ → λ̟ lead to

inequivalent solutions. By making shifts in x±, as in (6.16), we can set always set, say,

̟2 = 0 and then use the scale symmetry to set ̟1 = i,18 so that

̟ = ie1 + Ω , Ω · e1 = Ω · e2 = 0 , (7.13)

where the constant vector Ω is the internal collective coordinates of the magnon. The

explicit solution is rather cumbersome to write down,

Z = Z1e1 + Z2e2 + Z3Ω , (7.14)

where

Z1 = α̃ cos t+ cos

(

−2eip/2rx+ 2eipt

eip − r2

)

cos

(

−2eip/2rx+ (r2 + 1)eipt

−1 + eipr2

)

Z2 = −α̃ sin t− sin

(

−2eip/2rx+ 2eipt

eip − r2

)

cos

(

−2eip/2rx+ (r2 + 1)eipt

−1 + eipr2

)

Z3 = − cos

(

−2eip/2rx+ (r2 + 1)eipt

−1 + eipr2

)

,

(7.15)

17This is similar to the Euclidean space formulae in [33].
18The fact that we choose i here will make it simpler to relate the solution to the case M = Sn.
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and

α̃ =
eip

1 − eip

[

|Ω|2 + cos

(

4ir sin p
2(−(r2 + 1)x+ 2rt cos p2 )

2r2 cos p− 1 − r4

)]

+
1

1 − r2

[

|Ω|2 − cos

(

2(r2 − 1)(2rx cos p2 − (1 + r2)t)

2r2 cos p− 1 − r4

)]
(7.16)

The magnon carries SU(n) charge which can be extracted from (5.25). The computation

is simplified by noticing that the off-diagonal elements in Qi = F i(Γ
−1)ijF

†
j (those with

j 6= i) vanish as x → ±∞ and so do not contribute to the charge. This is because as

x → ±∞, β, as defined in (7.6), diverges exponentially, while γ, also defined in (7.6),

remains bounded. The remaining two contribution to the charge are then easily evaluated

to give

∆QL = −2
1 + r2

r
| sin p

2
|Λ . (7.17)

The magnon solution that we have constructed above is apparently singular when

|ξ| = 1, i.e. r = 1 or α = 0. However, a regular solution in this limit can be constructed by

imposing the additional condition that

γ = F †F0θF = ̟†θ̟ = 0 , (7.18)

which can be written as a condition on the internal collective coordinates,19

|Ω| = 1 . (7.19)

In this case, the matrix Γ is diagonal and the dressing transformation has the simpler form:

χ(λ) = 1 +
ξ − ξ∗

λ− ξ

FF †

β
− ξ − ξ∗

λ− ξ∗
F0θFF †θF†

0

β
, (7.20)

The solution can also be obtained from (7.14) by setting |Ω| = 1 and taking the limit

r → 1. It is not difficult to see that up to a re-scaling by

− cosh2 x′

sin p
2

, (7.21)

the solution is precisely an embedding of the Hofman-Maldacena magnon in (4.11). With

reference to the discussion in section 4, it is the one associated to RP 2 ⊂ CPn.

The solitonic avatar of the magnon (7.14) in the SSSG theory is 20

γ = 1 +
2

∆

[ |ξ2|β
(ξ − ξ∗)(1 − ξ∗)(1 + ξ)

F−1/2
0 FF †F1/2

0

+
ξγ

(|ξ|2 − 1)(1 − 1/ξ∗)(1 + ξ)
F1/2

0 θFF †F1/2
0

+
ξ∗γ

(|ξ|2 − 1)(1 − ξ∗)(1 + 1/ξ)
F−1/2

0 FF †θF−1/2
0

− β

(ξ − ξ∗)(1 − 1/ξ∗)(1 + 1/ξ)
F1/2

0 θFF †θF−1/2
0

]

.

(7.22)

19In addition, it is necessary that ̟2 = 0.
20In general this solution has det γ = eiC , for a constant C and so in order that γ ∈ G we should re-scale

it by an appropriate compensating factor, as is done below in the explicit expressions.
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In the rest frame, p = π, this solution has the explicit form

γ =







γ11 0 0T

0 γ22 γ23 Ω†

0 γ32 Ω 1 + (γ33 − 1)ΩΩ†






, (7.23)

where

γ11 = e2iη
(r − i)2|Ω|2 + 2ir cos 2T + (r2 − 1) cosh 2X

(r + i)2|Ω|2 − 2ir cos 2T + (r2 − 1) cosh 2X
,

γ22 = e2iη
(r − i)2e−2iη|Ω|2 − 2ir cos 2T + (r2 − 1) cosh 2X

(r + i)2|Ω|2 + 2ir cos 2T + (r2 − 1) cosh 2X
,

γ33 = e−4iη/3 (r + i)2e2iη|Ω|2 − 2ir cos 2T + (r2 − 1) cosh 2X

(r − i)2|Ω|2 + 2ir cos 2T + (r2 − 1) cosh 2X
,

γ23 = −e−iη/3 8r sin(T + iX)

(r − i)2|Ω|2 + 2ir cos 2T + (r2 − 1) cosh 2X
,

γ32 = −e−iη/3 8r sin(T − iX)

(r − i)2|Ω|2 + 2ir cos 2T + (r2 − 1) cosh 2X
,

(7.24)

where eiη = (r + i)/(r − i), and where

T =
r2 − 1

r2 + 1
t , X =

2r

r2 + 1
x . (7.25)

These solutions have vanishing SSSG charges QL = QR = 0. The mass of the solution can

be computed using the expression for the energy in (3.29) and one finds

M =
8r

1 + r2
= 4cosα . (7.26)

Notice that it is more meaningful to write the result in terms of the parameter α defined

in (4.21). The energy of the general moving solution (3.29) is

E =
8r

1 + r2

∣

∣

∣ sin
p

2

∣

∣

∣ . (7.27)

The solution with |ξ| = 1, is obtained by first taking the limit |Ω| → 1 and then r → 1

(note these limits do not commute). In this limit, and in the soliton rest frame,

γ =







−1 0 0T

0 −1 + 2 sech2(x) 2 tanh(x) sech (x)Ω†

0 2 tanh(x) sech (x)Ω 1− 2 sech2(x)ΩΩ†






, (7.28)

which is a static solution.

8 The spheres

In this case the target space of the sigma model is the symmetric space Sn ≃ SO(n +

1)/SO(n), and the symmetric space is picked out by the three involutions

σ
(1)
+ (F) = F†−1

, σ
(2)
+ (F) = F∗ , σ−(F) = θFθ−1 , (8.1)
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where θ is given in (4.2). Notice that σ− is of type σ1 in the list (5.32) and is consequently

holomorphic. The Pohlmeyer reduction is defined by taking Λ± as in (4.6). If we compare

with the discussion of CPn the only difference is the reality condition F∗ = F .

The simplest magnon solution is obtained by considering the dressing transformation

with a pair of poles ξ and 1/ξ, where ξ is a phase. The constraints on the collective

coordinates are (with ̟1 = ̟)

̟2 = θ̟ , ̟∗ = θ̟ , ̟†θ̟ = 0 . (8.2)

These are precisely the same conditions on the magnon of the CPn case with r = 1, with

an additional reality condition. So just as in (7.13) we have

̟ = ie1 + Ω , (8.3)

where now Ω is a real unit vector orthogonal to e1 and e2. Hence, the magnon has an

internal collective coordinate taking values in Sn−2. This magnon is precisely the Hofman-

Maldacena magnon (4.11). The soliton in the associated SSSG theory is precisely the r = 1

solution in the CPn case (7.28) with the additional restriction that Ω is real.

9 Dyonic magnons/solitons

One characteristic feature of the magnon/soliton solutions that we have generated using

the dressing transformation acting on the vacuum solution is that they carry a non-trivial

moduli space of internal collective coordinates [3, 14].

Usually when solitons have internal collective coordinates one expects there are more

general solutions for which the collective coordinates become time dependent. For a static

soliton, the resulting motion is simply geodesic motion on the moduli space corresponding

to a metric which is constructed from the inner products of the associated zero modes.

When the moduli space arises from the action of a global symmetry then the metric will

be invariant under the symmetry. The situation is familiar for BPS monopoles in gauge

theories. In this case the monopoles carry an internal S1 moduli space which can be

thought of as the U(1) charge orientation of the monopole. A more general solution, the

dyon, exists where the angle parameterizing the S1 rotates with constant angular velocity.

An important lesson for our present situation is that the dyon solution now carries electric

charge as a consequence of the motion. Finding the dyon is not easy because the motion

of the collective coordinate has a non-trivial back-reaction on the original solution.

In the present context, it is important to understand the action of the symmetries on

the collective coordinates. First of all, recall that the sigma model with target space a

symmetric space has a global F symmetry under which F → UFσ−(U−1), U ∈ F . Once

the Pohlmeyer reduction is performed, this symmetry corresponds to f± → Uf±, which

leaves the SSSG field γ = f−1
− f+ invariant. Notice that the vacuum solution is invariant

under the subgroup H ⊂ G ⊂ F .21 Hence, the transformations U ∈ H on a magnon have

21We are assuming here that H(±), the subgroups of G that commute with Λ±, are equal to H since in

this paper we have Λ+ = Λ−.
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a well defined action on the collective coordinates ̟ → U̟, i.e. Ω → UΩ in the CPn

and Sn cases. On the other hand, the SSSG theory exhibits a global HL ×HR symmetry

that acts as f± → f±h
−1
± or, equivalently, γ → h−γh

−1
+ , where h± ∈ H. In particular, the

vector subgroup γ → UγU−1 of transformations leaves the vacuum invariant and acts as a

transformation on the soliton’s collective coordinates in the same way as above: ̟ → U̟.

So the symmetry group H action on the collective coordinates can be interpreted in terms

of a transformation of both the magnon’s and soliton’s collective coordinates where H ⊂ F

and H ⊂ G, respectively. This symmetry will play an important rôle in fixing the geometry

on the moduli space of collective coordinates.

For example, for the cases M = CPn, the general magnon/soliton, (7.14) and (7.23),

has an internal collective coordinate Ω which is a complex n − 1 vector (presented as a

n+ 1-vector orthogonal to e1 and e2). For the particular solution with r = 1, we have the

additional constraint |Ω| = 1, so that the moduli space of collective coordinates is S2n−3.

In both cases there is a natural action of H = U(n − 1) on the moduli space. However,

in this case the symmetry is not large enough to completely fix the metric on the moduli

space.

For the case with M = Sn the soliton has a moduli space of collective coordinates

equal to Sn−2 parameterized by the real unit length n− 1 vector Ω (again presented as an

n+1-vector orthogonal to e1 and e2) on which there is a natural action of H = SO(n−1).

In this case, the symmetry fixes the metric on the moduli space (up to overall scaling).

Dorey’s solution is precisely the dyon associated to the Hofman-Maldacena magnon for the

case M = S3 = SO(4)/SO(3). In this case Ω is a unit 2-vector in the subspace spanned by

e3 and e4. Allowing it to rotate with constant angular velocity,

Ω(t) = cos(t sinα)e3 + sin(t sinα)e4 , (9.1)

leads to Dorey’s dyonic magnon. However, in order to compute the complete back-reacted

solution, it is more convenient to notice that there is another realization of the S3 =

SO(4)/SO(3) model as the principal chiral model for G = SU(2). The explicit map is

F =

(

X1 + iX2 iX3 +X4

iX3 −X4 X1 − iX2

)

∈ SU(2) . (9.2)

In the SU(2) formulation, the dyonic magnon is just the ordinary magnon solution which

we described in section 6. In particular, we wrote (9.1) in such a way that the parameter

α is the same as the one that appears as a parameter of the SU(2) magnon.

The dyonic magnon gives a dyonic generalization of the SSSG soliton as we described

in section 4 for the more general case with M = Sn, n > 3. In particular, the solution has

non-trivial gauge fields A
(+)
L and A

(−)
R , and, as we also explained in section 4, the dyonic

solution can also be embedded in CPn, for n ≥ 3 by using the maps S3 → RP 3 → CPn.

However, because the symmetry H = U(n − 1) is not large enough to fix the metric on

S2n−3 there should exist another inequivalent class of dyonic solutions. In more detail,

invariance under U(n− 1) fixes the metric to be a linear combination

ds2 = dΩ† · dΩ + ξ(dΩ† · Ω− Ω† · dΩ)2 , (9.3)
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up to overall scaling. When ξ = 0 we have the usual spherically symmetric metric and in

this case there are no new dyon solutions. However, when ξ 6= 0, the new class of dyon

solutions are associated to geodesics of the form

Ω(t) = ehtp , (9.4)

where we can choose the overall orientation so that p = (1, 0, . . . , 0). The allowed algebra

element h can be found by solving the geodesic equations for the metric (9.3). There are

two classes of solution, firstly

h = i

(

0 w†

w 0

)

, (9.5)

where w is a complex n− 2 vector. These give the embeddings of Dorey’s dyon. The new

class corresponds to

h = i

(

v wT

w (8ξ − 1)vw wT /|w|2

)

, (9.6)

where v is a real number and w is a real n− 2 vector. This new class includes the simple

example

Ω(t) =
(

eivt, 0, . . . , 0
)

. (9.7)

Such dyons will carry charge lying in the abelian subalgebra defined by h. For example in

the case M = CP 2 considered at the end of section 3, Ω = Ω is just a complex 1-vector

(or number) and only the new class of dyons with Ω(t) = eivt will exist. In terms of the

Lagrangian formulation via axial gauging in (3.63), the dyon will correspond to a solution

for which ψ̃ = vt. Finding the back-reaction on the fields ϕ(x) and θ(x) is a difficult

challenge that we will not solve here.

10 Conclusions and outlook

In this work we have considered the interplay between the magnons in the sigma model

describing string motion of certain symmetric spaces and the solitons of the related SSSG

equations. A notable result is that the dressing procedure produces the magnon and soliton

at the same time without the need to implement the complicated map between the two

systems. We have also described how the dressing procedure in its current understanding

cannot produce the more general dyonic magnon/soliton solutions which involve the non-

trivial motion of the internal collective coordinates. It would be interesting to try to find a

generalization of the dressing method which produces such dyonic solutions directly from

the vacuum. In this work we have restricted ourselves to the simplest compact symmetric

spaces and also to the simplest single magnon/soliton solutions: generalizations will be

presented elsewhere.
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A Relation to the gauged sigma model approach

In this appendix we summarize the relationship between the approach described in [12] (see

also [23]) and the formulation of the F/G symmetric space sigma model used in section 2

in terms of the principal chiral model for F . In [12], the F/G symmetric space sigma model

is formulated with two fields f ∈ F and Bµ ∈ g subject to the gauge symmetry

f → fg−1 , Bµ → g(Bµ + ∂µ)g
−1 , g ∈ G . (A.1)

If the Lie group F is simple, the nonlinear sigma model is defined by the Lagrangian

L = − 1

2κ
Tr
(

JµJ
µ
)

, (A.2)

where the current Jµ = f−1∂µf −Bµ → gJµg
−1 is covariant under gauge transformations.

The relationship between the two formulations relies on the fact that the solution

space of the F/G sigma model can be realized as a subspace of the solution space of the F

principal chiral model, which is a consequence of the following result due to Cartan [34]:

The smooth mapping

Φ : F/G → F , with fG 7→ Φ(fG) = σ−(f)f−1 , (A.3)

is a local diffeomorphism of F/G onto the closed totally geodesic submanifold M = {f ∈
F : σ−(f) = f−1}, where σ− is the involution of F that fixes G ⊂ F and gives rise to

the canonical decomposition (2.2). Examples of this map can be found in appendix C.

Taking (A.3) into account, the explicit connection between the two models was worked out

in [34] making use of the gauge-invariant field

F = σ−(f)f−1 (A.4)

that trivially satisfies the constraint (2.4); namely, σ−(F) = F−1. Notice that in (A.2) the

gauge fields Bµ are just Lagrangian multipliers whose equations-of-motion are Jµ
∣

∣

g
= 0,

which is equivalent to

Bµ = f−1∂µf
∣

∣

g
and Jµ = f−1∂µf

∣

∣

p
. (A.5)

Then, it is easy to check that

Jµ = ∂µFF−1 = −2σ−(f)Jµσ−(f−1) , (A.6)
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and the Lagrangian (A.2) becomes

L = − 1

2κ
Tr
(

JµJ
µ
)

= − 1

8κ
Tr
(

JµJ µ
)

, (A.7)

which is the Lagrangian of the F principal chiral model subject to the constraint (2.4).

Moreover, using the identity

DµJν = ∂µJν + [Bµ, Jν ] = −1

2
σ−(f−1)

(

∂µJν −
1

2
[Jµ,Jν ]

)

σ−(f) , (A.8)

the equations-of-motion of the F/G symmetric space sigma model become

D±J∓ = 0 ⇒ ∂±J∓ − 1

2

[

J±,J∓
]

= 0, (A.9)

which are just (2.12).

Now, taking (A.6) into account, the constraints that specify the Pohlmeyer reduction

of the model in terms of constrained principal chiral model field F can be imported directly

from the eqs. (3.11) and (3.17) of [12]:

∂±FF−1 = −2σ−(f) J± σ−(f−1) = −2σ−(f)
(

g±
(

µ±Λ±
)

g−1
±

)

σ−(f−1) , (A.10)

where g± ∈ G, Λ± ∈ a, and a is a maximal abelian subspace of p in (2.2). They correspond

to (3.1) with f± = σ−(f)g± ∈ F where, for simplicity and without loss of generality, we have

fixed µ± = −1
2 . One can think of these overall scales multipliers as having been absorbed

into Λ±. Moreover, since g± ∈ G, it is straightforward to check that σ−(f±) = F−1f±, and

that γ = g−1
− g+ = f−1

− f+ takes values in G, in agreement with (3.4) and (3.5), respectively.

B Integrability, conserved currents, energy-momentum tensor and

Lorentz transformations

In order to uncover the integrability of the SSSG equations (3.13), it is useful to formulate

them as the zero curvature condition

[L+,L−] = 0 , (B.1)

with the components of the Lax operator Lµ given by

L+ = ∂+ + γ−1∂+γ + γ−1A
(L)
+ γ − 1

2
zΛ+ ≡ L+(x±, γ,A

(L)
+ ; z) ,

L− = ∂− +A
(R)
− − 1

2
z−1γ−1Λ−γ ≡ L−(x±, γ,A

(R)
− ; z) .

(B.2)

In the above z, the spectral parameter, is an arbitrary auxiliary parameter whose intro-

duction plays a key rôle in establishing the integrability of the theory. The zero curvature

condition gives rise to an infinite number of conserved densities labeled by their spin. The

ones corresponding to spin 1 and 2 provide the usual Noether currents and the components
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of the stress-energy tensor, respectively. It is important to recall that the zero curvature

condition is subject to the gauge symmetry transformations

γ → h− γ h
−1
+ , A

(R)
− → h+

(

A
(R)
− + ∂−

)

h−1
+ , A

(L)
+ → h−

(

A
(L)
+ + ∂+

)

h−1
− . (B.3)

We can deduce the form of those conserved densities using the “Drinfeld-Sokolov pro-

cedure” [35]. In order to do that, we notice that, with the introduction of the spectral

parameter, the Lax operator can be written in terms of the affine algebra

f(1) =
∑

k∈Z

(

z2k ⊗ g + z2k+1 ⊗ p
)

=
⊕

k∈Z

f
(1)
k (B.4)

by means of

zΛ+ ≡ z ⊗ Λ+ ∈ f
(1)
1 , z−1Λ− ≡ z−1 ⊗ Λ− ∈ f

(1)
−1, A

(L/R)
± ≡ 1 ⊗A

(L/R)
± ∈ f

(1)
0 . (B.5)

Moreover, γ takes values in G that is the group associated to the Lie algebra f
(1)
0 . Next,

we introduce Φ(+) ∈ exp(f
(1)
<0), and solve

Φ(+)

(

∂+ + γ−1∂+γ + γ−1A
(L)
+ γ − 1

2
zΛ+

)

Φ−1
(+) = ∂+ − 1

2
zΛ+ + h(+), (B.6)

with

h(+) =
∑

k≤0

z−kh
(+)
−k ∈ Ker

(

Ad(Λ+)
)

∪ f
(1)
≤0. (B.7)

Correspondingly,

Φ(+)

(

∂− +A
(R)
− − 1

2
z−1γ−1Λ−γ

)

Φ−1
(+) = ∂− + I(+) , I(+) ∈ f

(1)
≤0 . (B.8)

Then, the zero curvature condition implies

[

∂+ − 1

2
zΛ+ + h(+), ∂− + I(+)

]

= 0 , (B.9)

The components of h(+) and I(+) on Cent
(

Ker
(

Ad(Λ+)
)

provide an infinite set of local

conserved densities, while the other components provide non-local conserved ones. A second

set of conserved quantities can be constructed starting from

γ

(

∂− +A
(R)
− − 1

2
z−1γ−1Λ−γ

)

γ−1 = ∂− − ∂−γγ
−1 + γA

(R)
− γ−1 − 1

2
z−1Λ− (B.10)

instead of L+.

The explicit expression of the densities of spin 1 and 2 can be found by writing

Φ(+) = exp
(

∑

k≥1

z−ky−k
)

, z−ky−k ∈ f
(1)
−k , (B.11)
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and looking at the first components of (B.6), which read

h
(+)
0 − 1

2
[Λ+, y−1] = γ−1∂+γ + γ−1A

(L)
+ γ ≡ q (B.12a)

h
(+)
−1 − 1

2
[Λ+, y−2] = −∂+y−1 + [y−1, q] −

1

4
[y−1, [y−1,Λ+]] (B.12b)

· · ·

Using (3.19), eq. (B.12a) provides

y−1 ∈ Im
(

Ad(Λ+)
)

, h
(+)
0 = Ph+

(

γ−1∂+γ + γ−1A
(L)
+ γ

)

= A
(R)
+ , (B.13)

where we have also used (3.18). In turn, (B.8) gives

I
(+)
0 = A

(R)
− . (B.14)

Therefore, the 0-grade component of (B.9) on Ker
(

Ad(Λ+)
)

reads

[

∂+ +A
(R)
+ , ∂− +A

(R)
−
]

= 0 , (B.15)

which is one of the two equations in (3.17). The other is obtained is a similar way starting

from (B.10) instead of L+. The local and non-local conserved quantities provided by these

equations and their interpretation are extensively discussed in section 3.

The components of the stress-energy tensor are found by looking at the components

of h
(+)
−1 and I

(+)
−1 along Λ+. Using (B.12b),

Tr
(

Λ+h
(+)
−1

)

= Tr
(

Λ+

(

[y−1, q] −
1

4
[y−1, [y−1,Λ+]]

)

)

= −Tr
(

(q − h
(+)
0 )2

)

≡ 2T++. (B.16)

Correspondingly, (B.8) provides

Tr
(

Λ+I
(+)
−1

)

= −1

2
Tr
(

Λ+γ
−1Λ−γ

)

≡ −2T−+ , (B.17)

and (B.9) leads to

∂+T−+ + ∂−T++ = 0. (B.18)

The component T−− is obtained is a similar fashion starting from (B.10) instead of L+.

Then, the complete set of components of the energy-momentum tensor can be written as

T++ = −1

2
Tr
(

(q − h
(+)
0 )2

)

= −1

2
Tr
[

(

∂+γγ
−1 +A

(L)
+

)2 −A
(R)
+

2]

(B.19a)

T−− = −1

2
Tr
[

(

γ−1∂−γ −A
(R)
−
)2 −A

(L)
−

2]

(B.19b)

T−+ = T−+ = +
1

4
Tr
[

Λ+γ
−1Λ−γ

]

, (B.19c)

and it can be easily checked that these expressions are gauge invariant.
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The formulation in terms of the Lax operator L± is also useful to discuss the behaviour

of the reduced equations under Lorentz transformations. The SSSG equations (3.13) are

Lorentz invariant, which means that given a solution

γ = γ(x+, x−), A
(L)
+ = A

(L)
+ (x+, x−), A

(R)
− = A

(R)
− (x+, x−) (B.20)

we can generate a boosted one by simply

γ → γλ = γ(λ−1x+, λx−) ,

A
(L)
+ → A

(L)
+ λ

= λ−1A
(L)
+ (λ−1x+, λx−) ,

A
(R)
− → A

(R)
− λ

= λ+1A
(R)
− (λ−1x+, λx−) .

(B.21)

This is equivalent to saying that the zero-curvature condition is invariant under the trans-

formations

x± → λ±1x±, γ → γ, A
(L)
+ → λ−1A

(L)
+ , A

(R)
− → λ+1A

(R)
+ . (B.22)

Correspondingly, the Lax operators (B.2) transform as

L+(x±, γ,A
(L)
+ ; z) → λ−1L+(x±, γ,A

(L)
+ ;λz),

L−(x±, γ,A
(R)
− ; z) → λ+1L−(x±, γ,A

(R)
− ;λz). (B.23)

In other words, the Lorentz transformation (B.22) is equivalent to the re-scaling of the

spectral parameter z → λz, and the zero-curvature condition is invariant because it does

not depend on z. Then, in (B.6) the Lorentz transformation (B.23) induces the following

transformation on the conserved densities:

h
(+)
−j → λ−1−jh

(+)
−j (B.24)

which, in particular, shows that h
(+)
0 is of spin 1 (currents) and, therefore, that the corre-

sponding conserved charges are Lorentz invariant.

In contrast to the SSSG equations, the Pohlmeyer reduced sigma model is not Lorentz

invariant, as a consequence of the constraints (3.1). However, we can use the formulation of

the former in term of the Lax operators L± to deduce a formal expression for the action of

Lorentz transformations on the solutions to the reduced sigma model equations-of-motion.

Consider the solutions to the z-dependent auxiliary linear problem

L+(x±, γ,A
(L)
+ ; z)Υ−1(z) = L−(x±, γ,A

(R)
− ; z−1)Υ−1(z) = 0 (B.25)

where Υ(z) ≡ Υ
(

x±, γ,A
(L)
+ , A

(R)
− ; z

)

, whose integrability conditions are provided by the

zero-curvature equation (B.1). As explained in [12], in the gauged sigma model ap-

proach the reduced sigma model configuration corresponding to a given SSSG solution
{

γ,A
(L)
+ , A

(R)
−
}

is specified by the solution to (B.25) for z = 1; namely, f = Υ(1).

Then, (B.23) shows that under a Lorentz transformation Υ(z) → Υ(λz), which induces

the following transformation of the reduced sigma model configuration:

f = Υ(1) −→ fλ = Υ(λ) . (B.26)
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C The spheres and complex projective spaces

In this appendix, we explain how to map the spaces Sn and CPn, expressed in terms of

their usual coordinates, into the group valued field F given by (A.4).

A generic f ∈ SO(n+ 1) satisfies ffT = 1 which is equivalent to facfbc = δab. Then,

F = σ−(f)f−1 = θfθfT (C.1)

which, in terms of components, reads

Fab = θac

(

δcb − 2fc1fb1

)

. (C.2)

Now, for a symmetric space M = F/G, we have to use that F = I0(M) is the identity

component of the group of isometries of M, and that it acts transitively on M = F/G.

This means that M = F · p0 for an arbitrary point p0 ∈ M and, moreover, that G is the

isotropy group (or little group) of p0. In our case, for Sn = SO(n+ 1)/SO(n) we can take

p0 = (1, 0, . . . , 0), so that the point corresponding to f is

X = f · p0 ⇒ Xa = fa1 (C.3)

Then, (C.2) becomes

F = θ
(

1 − 2XXT
)

, (C.4)

which is the parameterization we are looking for in terms of the unit vector X, |X| = 1.

Notice that the map X → F , which provides a particular example of (A.3), is surjective

but not injective.

A similar argument can be followed for the case of the complex projective spaces, in

which case (C.4) is replaced by

F = θ
(

1 − 2
ZZ†

|Z|2
)

, (C.5)

where Z is a vector whose components are the usual n+ 1 projective coordinates of CPn.

In this case, the map Z → F is one-to-one.

D The SSSG equations-of-motion

In this appendix we prove that the dressing procedure produces solutions of the SSSG

equations-of-motion (3.13) with vanishing gauge fields. To start with, using (5.4) along

with (5.6) and (5.8) one quickly deduces

∂±χ(λ)χ(λ)−1 =
χ(∓1)Λ±χ(∓1)−1 − χ(λ)Λ±χ(λ)−1

1 ± λ
(D.1)

from which it follows that

∂±χ(±1)χ(±1)−1 =
1

2

(

χ(∓1)Λ±χ(∓1)−1 − χ(±1)Λ±χ(±1)−1
)

. (D.2)
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By writing γ = F−1/2
0 χ(+1)−1χ(−1)F1/2

0 , and using ∂±F0 = Λ±F0, we have

γ−1∂+γ = − 1

2
F−1/2

0 χ(−1)−1χ(+1)Λ+χ(+1)−1χ(−1)F1/2
0 +

1

2
Λ+

−F−1/2
0 χ(−1)−1∂+χ(+1)χ(+1)−1χ(−1)F1/2

0

+ F−1/2
0 χ(−1)−1∂+χ(−1)F1/2

0 .

(D.3)

Using the upper-sign identity (D.2), one sees that the third term cancels the first two, to

leave

γ−1∂+γ = F−1/2
0 χ(−1)−1∂+χ(−1)F1/2

0 . (D.4)

Then

∂−
(

γ−1∂+γ
)

= − 1

2
Λ−F−1/2

0 χ(−1)−1∂+χ(−1)F1/2
0

+
1

2
F−1/2

0 χ(−1)−1∂+χ(−1)F1/2
0 Λ−

+ F−1/2
0 χ(−1)−1∂+

(

∂−χ(−1)χ(−1)−1
)

χ(−1)F1/2
0

(D.5)

Next, we use the lower-sign identity (D.2) to re-write the third term as

∂+

(

∂−χ(−1)χ(−1)−1
)

= − 1

2
∂+χ(−1)Λ−χ(−1)−1 +

1

2
χ(−1)Λ−χ(−1)−1∂+χ(−1)χ(−1)−1

+
1

2
∂+χ(+1)Λ−χ(+1)−1 − χ(+1)Λ−χ(+1)−1∂+χ(+1)χ(+1)−1 .

(D.6)

The first two terms cancel the first two terms in (D.5) to leave

∂−
(

γ−1∂+γ
)

=
1

2
F−1/2

0 χ(−1)−1∂+χ(+1)Λ−χ(+1)−1χ(−1)F1/2
0

− 1

2
F−1/2

0 χ(−1)χ(+1)Λ−χ(+1)−1∂+χ(+1)χ(+1)−1χ(−1)F1/2
0 .

(D.7)

Finally, we use the upper-sign identity in (D.2) again and the fact that [Λ+,Λ−] = 0, to

end up with

∂−
(

γ−1∂+γ
)

=
1

4
[Λ+, γ

−1Λ−γ] . (D.8)

This is (3.13) with A
(L)
+ = A

(R)
− = 0.

The next thing to prove is that the constraints (3.30) are satisfied. Taking the residue

of the upper sign in (D.1) at λ = −1, gives

∂+χ(−1)χ(−1)−1 = −∂λχ(−1)Λ+χ(−1)−1 + χ(−1)Λ+χ(−1)−1∂λχ(−1)χ(−1)−1 . (D.9)

Substituting this in (D.4), gives

γ−1∂+γ = −[F−1/2
0 χ(−1)−1∂λχ(−1)F1/2

0 ,Λ+

]

. (D.10)

with a similar expression for ∂−γγ−1. Hence, γ−1∂+γ and ∂−γγ−1 are in the image of

the adjoint action of Λ±. Then, provided that the orthogonal decompositions (3.19) hold,

which is always true if the symmetric space has definite signature, the constraints (3.30)

are satisfied.
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